Skip to main content
Log in

Characterization of swelling behavior and elastomer properties of acrylate polymers containing 2-ethylhexyl and isobornyl esters

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a comparative study of the swelling behavior of poly((1,7,7-trimethyl-2-bicyclo[2.2.1]heptanyl) prop-2-enoate) (poly(IBOA)) and its copolymer (poly(IBOA)-co-2-EHA)), prepared by radical polymerization with the addition of a low concentration of crosslinking agent and photoinitiator, was performed. The obtained networks were characterized by FTIR to show the conversion of acrylic band before and after polymerization and by differential scanning calorimetry. The copolymer network has a single glass transition temperature (Tg) that decreases relative to the poly(IBOA). The swelling study of poly(IBOA-co-2-EHA) was carried out by gravimetric method, in a series of polar (methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, hexan-1-ol and heptan-1-ol) and non-polar (toluene) isotropic solvents. Solubility, interaction and diffusion parameters that influence the swelling of copolymer in the solvents were calculated. The well-established order of swelling (toluene > heptan-1-ol > hexan-1-ol > pentan-1-ol > butan-1-ol > propan-1-ol > ethanol > methanol) in the copolymer was clearly observed, and moreover, the degree of swelling increased with the presence of EHA in the copolymer. A simple diffusion model was applied (Fick's model) to interpret the swelling data. It was found that the nature of solvent shifts the mechanism from diffusion-controlled in the case of alcohols to non-Fickian one for toluene. For a long period, the experimental results were well correlated with the second-order diffusion kinetics of Schott.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei C et al (2018) The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density. Bioresour Technol 249:713–719. https://doi.org/10.1016/j.biortech.2017.10.066

    Article  CAS  PubMed  Google Scholar 

  2. Zhang S-X et al (2017) Determination of the swelling behavior of superabsorbent polymers by a tracer-assisted on-line spectroscopic measurement. Polym Test 62:110–114. https://doi.org/10.1016/j.polymertesting.2017.06.020

    Article  CAS  Google Scholar 

  3. Basta AH, Lotfy VF, Eldewany C (2021) Comparison of copper-crosslinked carboxymethyl cellulose versus biopolymer-based hydrogels for controlled release of fertilizer. Polym Plast Technol Mater 60(17):1884–1897. https://doi.org/10.1080/25740881.2021.1934017

    Article  CAS  Google Scholar 

  4. Ni C, X.-X., Zhu, (2004) Synthesis and swelling behavior of thermosensitive hydrogels based on N-substituted acrylamides and sodium acrylate. Euro J Polym 40(6):1075–1080. https://doi.org/10.1016/j.eurpolymj.2003.12.017

    Article  CAS  Google Scholar 

  5. Freeman B, Yampolskii Y, Pinnau I (2006) Materials science of membranes for gas and vapor separation. Wiley, New York

    Google Scholar 

  6. Vieth WR (1991) Diffusion in and through polymers: principles and applications. Hanser, München

    Google Scholar 

  7. Neogi P (1996) Diffusion in polymers. Marcel Dekkers Inc, New York

    Google Scholar 

  8. Zemzem M, Vinches L, Hallé S (2021) Molecular sorption and diffusion of organic solvents through maleated rubber/layered silicate nanocomposites. J Elastomers Plast. https://doi.org/10.1177/00952443211006162

    Article  Google Scholar 

  9. Yin Y, Yang Y, Xu H (2002) Swelling behavior of hydrogels for colon-site drug delivery. J Appli Polym Sci 83(13):2835–2842. https://doi.org/10.1002/app.10259

    Article  CAS  Google Scholar 

  10. Li Y et al (2022) Preparation of pH-responsive cellulose nanofibril/sodium alginate based hydrogels for drug release. J Appl Polym Sci 139(7):51647. https://doi.org/10.1002/app.51647

    Article  CAS  Google Scholar 

  11. Liu M et al (2019) Ionic liquids as an effective additive for improving the solubility and rheological properties of hydrophobic associating polymers. J Mol Liquids 296:111833. https://doi.org/10.1016/j.molliq.2019.111833

    Article  CAS  Google Scholar 

  12. Karadağ E et al (2021) Swelling equilibria of novel propenamide/2-acrylamido-2-methyl-1-propanesulfonic acid/guar gum/clinoptilolite biohybrid hydrogels and application as a sorbent for BV1 removal. Polym Bull 78(7):3625–3649. https://doi.org/10.1007/s00289-020-03285-2

    Article  CAS  Google Scholar 

  13. Igarashi S et al (2006) Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy. Sens Actuators B Chem 117(1):43–49. https://doi.org/10.1016/j.snb.2005.11.001

    Article  CAS  Google Scholar 

  14. Tillman ES, Lewis NS (2003) Mechanism of enhanced sensitivity of linear poly(ethylenimine)-carbon black composite detectors to carboxylic acid vapors. Sens Actuators B Chem 96(1–2):329–342. https://doi.org/10.1016/S0925-4005(03)00567-7

    Article  CAS  Google Scholar 

  15. Liu J, Zheng X, Tang K (2013) Study on the gravimetric measurement of the swelling behaviors of polymer films. Rev Adv Mater Sci 33(5):452–458

    Google Scholar 

  16. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554. https://doi.org/10.1021/ac0346712

    Article  CAS  PubMed  Google Scholar 

  17. Cocchi G, De Angelis MG, Doghieri F (2015) Solubility and diffusivity of liquids for food and pharmaceutical applications in crosslinked polydimethylsiloxane (PDMS) films: I. Experimental data on pure organic components and vegetable oil. J Membr Sci 492:600–611. https://doi.org/10.1016/j.memsci.2015.04.063

    Article  CAS  Google Scholar 

  18. Bedjaoui S et al (2020) Unusual swelling of acrylate based crosslinked polymer networks in linear primary alcohols: experimental and modeling aspects. J Mol Liquids 320:114459. https://doi.org/10.1016/j.molliq.2020.114459

    Article  CAS  Google Scholar 

  19. Bye KP et al (2019) Pure and mixed fluid sorption and transport in Celazole® polybenzimidazole: effect of plasticization. J Membr Sci 580:235–247. https://doi.org/10.1016/j.memsci.2019.03.031

    Article  CAS  Google Scholar 

  20. Odian G (1991) Principles of polymerization, 3rd edn. New York, Wiley

    Google Scholar 

  21. Bouchikhi N et al (2019) Photo-curing kinetics of hydroxyethyl acrylate (HEA): synergetic effect of dye/amine photoinitiator systems. Int J Ind Chem. https://doi.org/10.1007/s40090-019-00197-7

    Article  Google Scholar 

  22. Peppas NA, Franson NM (1983) The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. J Polym Sci: Polym Phys Edition 21(6):983–997. https://doi.org/10.1002/pol.1983.180210614

    Article  CAS  Google Scholar 

  23. Rudzinski W, Plazinski W (2009) On the applicability of the pseudo-second order equation to represent the kinetics of adsorption at solid/solution interfaces: a theoretical analysis based on the statistical rate theory. Adsorption 15(2):181–192. https://doi.org/10.1007/s10450-009-9167-8

    Article  CAS  Google Scholar 

  24. Chatzi EG et al (1997) Infrared spectra and compositional analysis of styrene/2-ethylhexyl acrylate copolymers. Macromol Chem Phys 198(8):2409–2420. https://doi.org/10.1002/macp.1997.021980805

    Article  CAS  Google Scholar 

  25. Boudraa K, Bouchaour T, Maschke U (2020) Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments. J Therm Anal Calorim 140(4):1845–1857. https://doi.org/10.1007/s10973-019-08898-y

    Article  CAS  Google Scholar 

  26. Zeggai N et al (2018) Analysis of dynamic mechanical properties of photochemically crosslinked poly(isobornylacrylate-co-isobutylacrylate) applying WLF and Havriliak–-Negami models. Polym Test 72:432–438. https://doi.org/10.1016/j.polymertesting.2018.10.038

    Article  CAS  Google Scholar 

  27. Shojaei AH, Paulson J, Honary S (2000) Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion. J Control Rel 67(2–3):223–232. https://doi.org/10.1016/S0168-3659(00)00216-9

    Article  CAS  Google Scholar 

  28. Tanaka T (1986) Kinetics of phase transition in polymer gels. Physica A 140(1–2):261–268. https://doi.org/10.1016/0378-4371(86)90230-X

    Article  Google Scholar 

  29. Tanaka T et al (1987) Mechanical instability of gels at the phase transition. Nature 325(6107):796–798. https://doi.org/10.1038/325796a0

    Article  CAS  Google Scholar 

  30. Dervaux J, Amar MB (2012) Mechanical instabilities of gels. Annu Rev Condens Matter Phys 3(1):311–332. https://doi.org/10.1146/annurev-conmatphys-062910-140436

    Article  CAS  Google Scholar 

  31. Burke J (1984) Solubility parameters: theory and application

  32. Barton A (2013) CRC handbook of solubility parameters and other cohesion parameters. New York. https://doi.org/10.1201/9781315140575

  33. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14(2):147–154. https://doi.org/10.1002/pen.760140211

    Article  CAS  Google Scholar 

  34. Şen M, Güven O (1998) Determination of solubility parameter of poly(N-vinyl 2-pyrrolidon/ethylene glycol dimethacrylate) gels by swelling measurements. J Polym Sci Part B: Polym Phys 36(2):213–219. https://doi.org/10.1002/(SICI)10990488(19980130)36:2%3C213::AID-POLB2%3E3.0.CO;2-S

    Article  Google Scholar 

  35. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton. https://doi.org/10.1201/9781420006834

    Book  Google Scholar 

  36. TrongáNguyen Q (1993) Sorption of organic solvents into dense silicone membranes. Part 1—validity and limitations of Flory–-Huggins and related theories. J Chem Soc Faraday Trans 89(24):4339–4346. https://doi.org/10.1039/FT9938904339

    Article  Google Scholar 

  37. Ferrell WH, Kushner DI, Hickner MA (2017) Investigation of polymer–solvent interactions in poly(styrene sulfonate) thin films. J Polym Sci Part B: Polym Phys 55(18):1365–1372. https://doi.org/10.1002/polb.24383

    Article  CAS  Google Scholar 

  38. Sudduth RD (2013) A review of the similarities and differences between five different polymer-solvent interaction coefficients. Pigment Resin Technol. https://doi.org/10.1108/PRT-07-2012-0042

    Article  Google Scholar 

  39. Scott RL, Magat M (1949) Thermodynamics of high-polymer solutions. III. Swelling of cross-linked rubber. J Polym Sci 4(5):555–571. https://doi.org/10.1002/pol.1949.120040502

    Article  CAS  Google Scholar 

  40. Blanks RF, Prausnitz J (1964) Thermodynamics of polymer solubility in polar and nonpolar systems. Ind Eng Chem Fundam 3(1):1–8. https://doi.org/10.1021/i160009a001

    Article  CAS  Google Scholar 

  41. Bae Y et al (1993) Representation of vapor–liquid and liquid–liquid equilibria for binary systems containing polymers: applicability of an extended Flory–-Huggins equation. J Appl Polym Sci 47(7):1193–1206. https://doi.org/10.1002/app.1993.070470707

    Article  CAS  Google Scholar 

  42. Favre E, Clément R, Nguyen QT, Schaetzel P, Néel J (1993) Sorption of organic solvents into dense silicone membranes. Part 2—Development of a new approach based on a clustering hypothesis for associated solvents. J Chem Soc Faraday Trans 89(24):4347–4353. https://doi.org/10.1039/FT9938904347

    Article  CAS  Google Scholar 

  43. Kappert EJ et al (2019) Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: a comprehensive dataset. J Membr Sci 569:177–199. https://doi.org/10.1016/j.memsci.2018.09.059

    Article  CAS  Google Scholar 

  44. Chilin C, Metters A (2006) Hydrogels in controlled release formulations: network design and mathematical modelling. Adv Drug Deliv Rev 58:1379–1408. https://doi.org/10.1016/j.addr.2006.09.004

    Article  CAS  Google Scholar 

  45. Wang C et al (2008) Synthesis and performance of novel hydrogels coatings for implantable glucose sensors. Biomacromol 9(2):561–567. https://doi.org/10.1021/bm701102y

    Article  CAS  Google Scholar 

  46. Bajpai A, Bajpai J, Shukla S (2002) Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains. React Funct Polym 50(1):9–21. https://doi.org/10.1016/S1381-5148(01)00085-2

    Article  CAS  Google Scholar 

  47. Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigm 77(2):415–426. https://doi.org/10.1016/j.dyepig.2007.07.001

    Article  CAS  Google Scholar 

  48. Aminabhavi TM, Khinnavar RS (1993) Diffusion and sorption of organic liquids through polymer membranes: 10. Polyurethane, nitrile-butadiene rubber and epichlorohydrin versus aliphatic alcohols (C1–C5). Polymer 34(5):1006–1018. https://doi.org/10.1016/0032-3861(93)90222-V

    Article  CAS  Google Scholar 

  49. Bernardo G (2013) Diffusivity of alcohols in amorphous polystyrene. J Appl Polym Sci 127(3):1803–1811. https://doi.org/10.1002/app.37918

    Article  CAS  Google Scholar 

  50. Xu N, Xiao C (2011) Kinetics modeling and mechanism of organic matter absorption in functional fiber based on butyl methacrylate-hydroxyethyl methacrylate copolymer and low density polyethylene. Polym Plast Technol Eng 50(14):1496–1505. https://doi.org/10.1080/03602559.2011.593084

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This report has been accomplished in the framework of an international research program. The authors gratefully acknowledge the support of the Algerian Ministry of Higher Education and Scientific Research (MESRS), the General Directorate of Scientific Research and Technological Development (DGRSDT) of Algeria, the University of Tlemcen in Algeria, the CNRS, and the University of Lille—Sciences and Technologies/France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Bedjaoui-Alachaher.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dounya, M., Maschke, U., Bouchikhi, N. et al. Characterization of swelling behavior and elastomer properties of acrylate polymers containing 2-ethylhexyl and isobornyl esters. Polym. Bull. 80, 10073–10098 (2023). https://doi.org/10.1007/s00289-022-04491-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04491-w

Keywords

Navigation