Skip to main content
Log in

Semi-coke-enhanced eco-friendly superabsorbent composites for agricultural application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The superabsorbent polymers (SAP) possessed the favorable properties of absorbing and holding water, as well as the good degradability are urgently required for modern agriculture. And the grafting polymerization based on the natural polymers is an effective method for preparation of the SAP with degradability. In this work, a novel degradable SAP of CTS-g-PAA/SC was successful prepared via grafting the acrylic acid onto the chitosan (CTS) and introducing the oil shale semi-coke (SC) as inorganic component. The structure, morphology and thermal stability of the SAP were systemically studied by FTIR, SEM and TGA. Meanwhile, the water absorption capacities of SAP in different pH or various saline solutions as well as the reusability and the water retention capacity in soil were also investigated. The result suggested that the successful grafting polymerization and the SAP possessed the excellent water absorption capabilities, which were as high as 514.5 g/g in distilled water and 60.3 g/g in 0.9 wt% NaCl solution, respectively. More importantly, the cultivation experiments verified the SAP not only promoted the plants growth, but also could be degraded about 37.5% in the 70 days. Therefore, based on its excellent water retention, degradability and low cost, the SAP may have the great application potential in modern agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watanabe K, Saensupo S, Na-iam Y, Klomsa-ard P, Sriroth K (2019) Effects of superabsorbent polymer on soil water content and sugarcane germination and early growth in sandy soil conditions. Sugar Tech 21:444–450. https://doi.org/10.1007/s12355-018-0672-5

    Article  CAS  Google Scholar 

  2. Ge H, Wang S (2014) Thermal preparation of chitosan-acrylic acid superabsorbent: optimization, characteristic and water absorbency. Carbohydr Polym 113:296–303. https://doi.org/10.1016/j.carbpol.2014.06.078

    Article  CAS  Google Scholar 

  3. Li S, Chen G (2019) Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J Cleaner Prod 251(1):119669. https://doi.org/10.1016/j.jclepro.2019.119669

    Article  CAS  Google Scholar 

  4. Xie L, Liu M, Ni B, Xu Z, Wang YF (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng J 167:342–348. https://doi.org/10.1016/j.cej.2010.12.082

    Article  CAS  Google Scholar 

  5. Sime G, Aune JB, Mohammed H (2015) Mohammed, agronomic and economic response of tillage and water conservation management in maize, central rift valley in Ethiopia. Soil Tillage Res 148:20–30. https://doi.org/10.1016/j.still.2014.12.001

    Article  Google Scholar 

  6. Watanabe K, Saensupo S, Na-Iam Y, Klomsa-ard P, Sriroth K (2019) Effects of superabsorbent polymer on soil water content and sugarcane germination and early growth in sandy soil conditions. Sugar Tech. https://doi.org/10.1007/s12355-018-0672-5

    Article  Google Scholar 

  7. Abedi-Koupai J, Sohrab F, Swarbrick G (2008) Evaluation of hydrogel application on soil water retention characteristics. J Plant Nut 31:317–331. https://doi.org/10.1080/01904160701853928

    Article  CAS  Google Scholar 

  8. Mittal H, Mishra SB, Mishra AK, Kaith BS, Jindal R, Kalia S (2013) Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Carbohydr Polym 98:397–404. https://doi.org/10.1016/j.carbpol.2013.06.026

    Article  CAS  Google Scholar 

  9. Montesano FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agri Agri Sci Procedia 4:451–458. https://doi.org/10.1016/j.aaspro.2015.03.052

    Article  Google Scholar 

  10. Zhu JL, Tan WK, Song X, Gao ZY, Wen YT, Ong CN, Loh CS, Swarup S, Li J (2020) Converting Okara to Superabsorbent hydrogels as soil supplements for enhancing the growth of Choy sum (Brassica sp.) under water-limited conditions. ACS Sustain Chem Eng 8:9425–9433. https://doi.org/10.1021/acssuschemeng.0c02181

    Article  CAS  Google Scholar 

  11. Sarvaš M, Pavlenda P, Takáčová E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53(5):204–209. https://doi.org/10.17221/2178-JFS

    Article  Google Scholar 

  12. Irfan SA, Razali R, Kushaari KZ, Mansor N, Versypt A (2018) A review of mathematical modeling and simulation of controlled-release fertilizers. J Control Release 271:45–54. https://doi.org/10.1016/j.jconrel.2017.12.017

    Article  CAS  Google Scholar 

  13. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Delivery Rev 107:163–175. https://doi.org/10.1016/j.addr.2016.06.018

    Article  CAS  Google Scholar 

  14. Limwanich W, Meepowpan P, Punyodom W (2020) Eco-friendly synthesis of biodegradable poly(ε-caprolactone) using l-lactic and glycolic acids as organic initiator. Polym Bull. https://doi.org/10.1007/s00289-020-03401-2

    Article  Google Scholar 

  15. Ten E, Jiang L, Zhang J, Wolcott MP (2015) Mechanical performance of polyhydroxyalkanoate (PHA)-based biocomposites. Biocomposites. https://doi.org/10.1016/B978-1-78242-373-7.00008-1

    Article  Google Scholar 

  16. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

    Article  CAS  Google Scholar 

  17. Wan T, Xiong L, Huang RQ, Zhao QH, Tian XM, Qin LL, Hu JY (2020) Structure and properties of corn stalk-composite superabsorbent. Polym Bull 71:371–383. https://doi.org/10.1007/s00289-013-1066-1

    Article  CAS  Google Scholar 

  18. Averous L, Pollet E (2012) Environmental silicate nano-biocomposites. Green Energy Technol. https://doi.org/10.1007/978-1-4471-4108-2-2

    Article  Google Scholar 

  19. Yu XA, Wang ZA, Liu JA, Mei HA, Yong DB, Li JB (2019) Preparation, swelling behaviors and fertilizer-release properties of sodium humate modified superabsorbent resin. Mater Today Commun 19:124–130. https://doi.org/10.1016/j.mtcomm.2018.12.015

    Article  CAS  Google Scholar 

  20. Nandkishore T, Sumit M, Siddiqui MZ, Usha J, Mahajan GR (2018) Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr Polym 185:169–178. https://doi.org/10.1016/j.carbpol.2018.01.018

    Article  CAS  Google Scholar 

  21. Phang YN, Chee SY, Lee CO, Teh YL (2000) Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym Degrad Stab 96:1661. https://doi.org/10.1016/j.polymdegradstab.2011.06.010

    Article  CAS  Google Scholar 

  22. Fang XS, Wang GJ, Li PC, Xing RG, Liu S, Qin YK (2018) Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 115:754–761. https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  Google Scholar 

  23. El-Sherif H, El-Masry M (2011) Superabsorbent nanocomposite hydrogels based on intercalation of chitosan into activated bentonite. Polym Bull 66:721–734. https://doi.org/10.1007/s00289-010-0301-2

    Article  CAS  Google Scholar 

  24. Liu Y, Zhu YF, Wang YS, Quan ZJ, Zong L, Wang AQ (2021) Synthesis and application of eco-friendly superabsorbent composites based on xanthan gum and semi-coke. Int J Biol Macromol 197:230–238. https://doi.org/10.1016/j.ijbiomac.2021.03.007

    Article  CAS  Google Scholar 

  25. Wang YS, Zhu YF, Liu Y, Wang AQ (2020) Fabrication of eco-friendly superabsorbent composites based on waste semicoke. Polymers 12:2347. https://doi.org/10.3390/polym12102347

    Article  CAS  Google Scholar 

  26. Lu YS, Xu J, Wang WB, Wang TT, Zong L, Wang AQ (2020) Synthesis of iron red hybrid pigments from oil shale semi-coke waste. Adv Powder Technol 31:2276–2284. https://doi.org/10.1016/j.apt.2020.03.020

    Article  CAS  Google Scholar 

  27. Liu Y, Zhu YF, Mu B, Wang YS, Quan ZJ, Wang AQ (2021) Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent. Polym Bull 27:1086–1095. https://doi.org/10.1007/s00289-021-03545-9

    Article  CAS  Google Scholar 

  28. Yang HY, Tong DS, Dong YX, Ren LB, Fang K, Zhou CH, Yu WH (2020) Kaolinite: a natural and stable catalyst for depolymerization of cellulose to reducing sugars in water. Appl Clay Sci 188:05512. https://doi.org/10.1016/j.clay.2020.105512

    Article  CAS  Google Scholar 

  29. Zhu H, Yao X (2013) Synthesis and characterization of poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid)/kaolin superabsorbent composite. J Macromol Sci Chem 50:175–184. https://doi.org/10.1080/10601325.2013.741891

    Article  CAS  Google Scholar 

  30. Etminani-Isfahani N, Mohammadbagheri Z, Rahmati A (2020) 4-(6-Aminohexyl) amino-4-oxo-2-butenoic acid as a novel hydrophilic monomer for synthesis of cellulose-based superabsorbents with high water absorption capacity. Carbohydr Polym 250:116959. https://doi.org/10.1016/j.carbpol.2020.116959

    Article  CAS  Google Scholar 

  31. Alam MN, Christopher LP (2018) Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties. ACS Sustain Chem Eng 6:8736–8742. https://doi.org/10.1021/acssuschemeng.8b01062

    Article  CAS  Google Scholar 

  32. Zhang JP, Wang Q, Wang AQ (2007) Wang, synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohyd Polyme 68(2):367–374. https://doi.org/10.1016/j.carbpol.2006.11.018

    Article  CAS  Google Scholar 

  33. Essawy HA, Ghazy MBM, EI-Hai FA, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151. https://doi.org/10.1016/j.ijbiomac.2016.04.071

    Article  CAS  Google Scholar 

  34. Rashidzadeh A, Olad A (2014) Slow-released npk fertilizer encapsulated by naalg-g-poly(aa-co-aam)/mmt superabsorbent nanocomposite. Carbohydr Polym 114:269–278. https://doi.org/10.1016/j.carbpol.2014.08.010

    Article  CAS  Google Scholar 

  35. He GH, Ke WW, Chen X, Kong YH, Zheng H, Yin YH, Caiet WQ (2017) Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React Polym 11:14–21. https://doi.org/10.1016/j.reactfunctpolym.2016.12.001

    Article  CAS  Google Scholar 

  36. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acry-lamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:1–15. https://doi.org/10.1007/s10965-013-0344-9

    Article  CAS  Google Scholar 

  37. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohyd Polyme 66(2):229–245. https://doi.org/10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  38. Wang X, Zheng Y, Zhang C, Zong L (2020) Preparation and swelling properties of hydrolysis-resistant superabsorbent composite based on acrylic acid and sodium bentonite. Int J Polym Anal Charact 25:1–15. https://doi.org/10.1080/1023666X.2020.1783939

    Article  CAS  Google Scholar 

  39. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395. https://doi.org/10.1016/j.carbpol.2006.03.013

    Article  CAS  Google Scholar 

  40. Wen P, Wu Z, Han Y, Cravotto G, Wang J, Ye BC (2017) Rapid synthesis of a corncob-based semi-interpenetrating polymer network slow-release nitrogen fertilizer by microwave irradiation to control water and nutrient losses. Arabian J Chem 7:922–934. https://doi.org/10.1016/j.arabjc.2017.03.002

    Article  CAS  Google Scholar 

  41. Zhu ZQ, Sun HX, Qin XJ, Lei J, Deng WQ (2012) Preparation of poly(acrylic acid)-graphite oxide superabsorbent nanocomposites. J Mater Chem 22(11):4811–4817. https://doi.org/10.1016/j.carbpol.2006.11.018

    Article  CAS  Google Scholar 

  42. Shi XN, Wang WB, Wang AQ (2013) pH-responsive sodium alginate-based superporous hydrogel generated by an anionic surfactant micelle templating. Carbohydr Polym 94:449–455. https://doi.org/10.1016/j.carbpol.2013.01.019

    Article  CAS  Google Scholar 

  43. Zhang JP, Zhang FS (2018) A new approach for blending waste plastics processing: superabsorbent resin synthesis. J Cleaner Prod 197:501–510. https://doi.org/10.1016/j.jclepro.2018.06.222

    Article  CAS  Google Scholar 

  44. Cheng S, Liu XM, Zhen JH, Lei ZQ (2019) Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr Polym 225:115214. https://doi.org/10.1002/mame.200500387

    Article  CAS  Google Scholar 

  45. Zohuriaan J, Kabiri K (2008) Superabsorbent polymer materials: a review. Biores Technol 102(21):10139–10142. https://doi.org/10.1016/j.biortech.2011.07.096

    Article  CAS  Google Scholar 

  46. Anugoolprasert O, Kinoshita S, Naito H, Shimizu M, Ehara H (2015) Effect of low pH on the growth, physiological characteristics and nutrient absorption of sago palm in a hydroponic system. Plant Prod Sci 15(2):125–131. https://doi.org/10.1626/pps.15.125

    Article  Google Scholar 

  47. Buchholz FL, Graham AT (1997) Modern superabsorbent polymer technology. Modern superabsorbent polymer technology-research and markets. Choice Rev Online. https://doi.org/10.5860/choice.35-5664

    Article  Google Scholar 

  48. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym Degrad Stab 107:166–177. https://doi.org/10.1016/j.polymdegradstab.2014.05.014

    Article  CAS  Google Scholar 

  49. PhetwarotaiW PP, Aht-Ong D (2012) Biodegradation of polylactide and gelatinized starch blend films under controlled soil burial conditions. J Polym Environ 21:95–107. https://doi.org/10.1007/s10924-012-0530-6

    Article  CAS  Google Scholar 

  50. Khushbu Warkar SG, Kumar A (2019) Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. Polymer 182:121823. https://doi.org/10.1016/j.polymer.2019.121823

    Article  CAS  Google Scholar 

  51. Chen RY, Li WX, Zhang SF (2012) A multifunctional eco-friendly fertilizer used keratin-based superabsorbent as coatings for slow-release urea and remediation of contaminated soil. Prog Org Coat 154:106158. https://doi.org/10.1016/j.porgcoat.2021.106158

    Article  CAS  Google Scholar 

  52. Wen P, Wu Z, Han Y, Cravotto G, Wang J, Ye BC (2017) Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain Chem Eng 5:7374–7382. https://doi.org/10.1021/acssuschemeng.7b01721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Major Projects of the Natural Science Foundation of Gansu, China (18JR4RA001), the Top Ten Science and Technology Innovation Projects in Lanzhou (2019-3-1) and the Youth Innovation Promotion Association CAS (2016370).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xicun Wang or Aiqin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3049 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, Y., Wang, Y. et al. Semi-coke-enhanced eco-friendly superabsorbent composites for agricultural application. Polym. Bull. 80, 569–588 (2023). https://doi.org/10.1007/s00289-022-04099-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04099-0

Keywords

Navigation