Skip to main content

Advertisement

Log in

Modification of curing, morphological, mechanical and electrical properties of epoxidised natural rubber (ENR-25) through the addition of copper calcium titanium oxide (CCTO)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The limited applicability of very high dielectric permittivity ceramic materials such as copper calcium titanium oxide, commonly known as CCTO (εr = 100,000 at room temperature and nearly independent of frequency from 1 Hz to 1 MHz), could be improved through the fabrication of polymer matrix composites. Ceramic is brittle while polymers are materials that are ductile and have excellent flexibility but low εr. Another contrast between the two materials is the fabrication process where ceramic, specifically, requires pressing and a high sintering temperature. Hence, the right combination of ceramic and polymeric materials should theoretically produce a composite with excellent mechanical and electrical properties. Therefore, a study on CCTO ceramic powder blended with 25 mol% of epoxidised natural rubber (ENR-25) was carried out. The CCTO powder was initially synthesised through solid-state reaction followed by compounding with ENR-25 formulations with different CCTO loadings (0, 20, 40, 60, 80, 100, and 120 phr) in an internal mixer. Small blocks of the composite were cast into ~ 2 mm of mould thickness and then hot compressed into square shapes. Samples were characterised by curing, mechanical, electrical, and microstructural properties. As a result, the addition of CCTO was found to have lowered the curing time, i.e. tc90 at 20 phr, compared to composites without CCTO loading. Then, the curing time gradually increased with filler loading from 2.05 to 2.48 at 20 to 120 phr loading, respectively. Mechanical testing of the composites showed an increase in tensile strength from 5.91 to 16.46 MPa. However, with content higher than 40 phr content, the tensile strength's magnitude gradually decreased with increasing filler loading from 13.63 to 6.49 MPa. In comparison, hardness properties increased with an increase of filler loading from 30.5 to 44.7 Shore A. Meanwhile, LCR meter showed that increased CCTO content could improve εr value from 6.134 to 12.114 at 75 kHz and decrease the dielectric loss (tan δ) from 0.179 to 0.150 at 2 MHz. The composite's microstructure also shows CCTO crystals embedded in the ENR-25 with excellent surface contact. The surface morphology showed that samples with filler content of 60 phr onwards had a lot of CCTO particle pore agglomeration, which reduced its mechanical strength from 16.46 to 6.49 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ruan M, Yang D, Guo W et al (2018) Improved dielectric properties, mechanical properties, and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method. Appl Surf Sci 439:186–195. https://doi.org/10.1016/j.apsusc.2017.12.250

    Article  CAS  Google Scholar 

  2. Yang D, Kong X, Ni Y et al (2019) Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant. Compos Part A Appl Sci Manuf 124:105447. https://doi.org/10.1016/j.compositesa.2019.05.015

    Article  CAS  Google Scholar 

  3. Yang D, Huang S, Wu Y et al (2015) Enhanced actuated strain of titanium dioxide/nitrile-butadiene rubber composite by the biomimetic method. RSC Adv 5:65385–65394. https://doi.org/10.1039/c5ra12311a

    Article  CAS  Google Scholar 

  4. Salaeh S, Muensit N, Bomlai P, Nakason C (2011) Ceramic/natural rubber composites: Influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. J Mater Sci 46:1723–1731. https://doi.org/10.1007/s10853-010-4990-6

    Article  CAS  Google Scholar 

  5. Jiang S, Jin L, Hou H, Zhang L (2019) Polymer-based nanocomposites with high dielectric permittivity. Elsevier Inc, Hoboken

    Book  Google Scholar 

  6. Sain PK, Goyal RK, Bhargava AK, Prasad YVSS (2014) Thermal and dielectric behavior of flexible polycarbonate/lead zirconate titanate composite system. J Appl Polym Sci 131:1–7. https://doi.org/10.1002/app.39913

    Article  CAS  Google Scholar 

  7. Subramanian MA, Li D, Duan N et al (2000) High dielectric constant in ACu3Ti4O12and ACu3Ti3FeO12phases. J Solid State Chem 151:323–325. https://doi.org/10.1006/jssc.2000.8703

    Article  CAS  Google Scholar 

  8. Sulaiman MA, Hutagalung SD, Mohamed JJ et al (2011) High frequency response to the impedance complex properties of Nb-doped CaCu3Ti4O12 electroceramics. J Alloys Compd 509:5701–5707. https://doi.org/10.1016/j.jallcom.2011.02.145

    Article  CAS  Google Scholar 

  9. Li Y, Li W, Du G, Chen N (2017) Low temperature preparation of CaCu3Ti4O12ceramics with high permittivity and low dielectric loss. Ceram Int 43:9178–9183. https://doi.org/10.1016/j.ceramint.2017.04.069

    Article  CAS  Google Scholar 

  10. Li R, Zhou J, Liu H, Pei J (2017) Effect of polymer matrix on the structure and electric properties of piezoelectric lead zirconatetitanate/polymer composites. Mater (Basel) 10:945. https://doi.org/10.3390/ma10080945

    Article  CAS  Google Scholar 

  11. González N, Custal M, dels À, Tomara GN, et al (2017) Dielectric response of vulcanised natural rubber containing BaTiO3filler: the role of particle functionalisation. Eur Polym J 97:57–67. https://doi.org/10.1016/j.eurpolymj.2017.10.001

    Article  CAS  Google Scholar 

  12. Faibunchan P, Nakaramontri Y, Chueangchayaphan W et al (2018) Novel biodegradable thermoplastic elastomer based on poly(butylene succinate) and epoxidized natural rubber simple blends. J Polym Environ 26:2867–2880. https://doi.org/10.1007/s10924-017-1173-4

    Article  CAS  Google Scholar 

  13. Khumpaitool B, Utara S, Jantachum P (2018) Thermal and mechanical properties of an epoxidised natural rubber composite containing a Li/Cr co-doped NiO-based filler. J Met Mater Miner. https://doi.org/10.14456/jmmm.2018.12

    Article  Google Scholar 

  14. Gelling IR (1985) Modification of natural rubber latex with peracetic acid. Rubber Chem Technol 58:86–96

    Article  CAS  Google Scholar 

  15. Hayeemasae N, Waesateh K, Saiwari S et al (2020) Detailed investigation of the reinforcing effect of halloysite nanotubes-filled epoxidised natural rubber. Polym Bull. https://doi.org/10.1007/s00289-020-03461-4

    Article  Google Scholar 

  16. Zaman RA, Abu MJ, Ab Karim S et al (2016) Synthesise CCTO using different mixing media. Mater Sci Forum 840:87–90. https://doi.org/10.4028/www.scientific.net/MSF.840.87

    Article  Google Scholar 

  17. Chuayjuljit S, Nutchapong T, Saravari O (2015) Preparation and characterisation of epoxidised natural rubber and epoxidized natural rubber / carboxylated styrene butadiene rubber blends. J Met Mater Miner 25:27–36. https://doi.org/10.14456/jmmm.2015.4

    Article  CAS  Google Scholar 

  18. Krainoi A, Kummerlöwe C, Nakaramontri Y et al (2018) Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidised natural rubber nanocomposites. Polym Test 66:122–136. https://doi.org/10.1016/j.polymertesting.2018.01.003

    Article  CAS  Google Scholar 

  19. Saidina DS, Mariatti M, Julie MJ (2014) Properties of calcium copper titanate and barium titanate filled epoxy composites for electronic applications: effect of filler loading and hybrid fillers. J Mater Sci Mater Electron 25:4923–4932. https://doi.org/10.1007/s10854-014-2253-z

    Article  CAS  Google Scholar 

  20. Muhamad Sharifuddin S, Mat Nor MS, Mohd Pabli FA et al (2020) Thermal and dynamic mechanical behaviours of CCTO/ENR-25 composite. Mater Sci Forum 1010:274–279. https://doi.org/10.4028/www.scientific.net/msf.1010.274

    Article  Google Scholar 

  21. Dahham OS, Noriman NZ, Sam ST et al (2016) The effects of trans-polyoctylene rubber (TOR) as a compatibilizer on the properties of epoxidised natural rubber/recycled silicone catheter (ENR-25/rSC) vulcanizate. MATEC Web Conf. https://doi.org/10.1051/matecconf/20167801076

    Article  Google Scholar 

  22. Ondrušová D, Labaj I, Pajtášová M, Vršková J (2019) Preparation and properties of new elastomeric systems containing alternative fillers. MATEC Web Conf 254:07003. https://doi.org/10.1051/matecconf/201925407003

    Article  CAS  Google Scholar 

  23. Luangchuang P, Chueangchayaphan N, Sulaiman MA, Chueangchayaphan W (2021) High permittivity ceramics-filled acrylonitrile butadiene rubber composites: influence of acrylonitrile content and ceramic type. Polym Bull 78:1755–1769. https://doi.org/10.1007/s00289-020-03181-9

    Article  CAS  Google Scholar 

  24. Mohamad Z, Ismail H, Thevy RC (2006) Characterisation of epoxidised natural rubber/ethylene vinyl acetate (ENR-50/EVA) blend: Effect of blend ratio. J Appl Polym Sci 99:1504–1515. https://doi.org/10.1002/app.22154

    Article  CAS  Google Scholar 

  25. Intharapat P, Kongnoo A, Kateungngan K (2013) The potential of chicken eggshell waste as a bio-filler filled epoxidized natural rubber (ENR) composite and its properties. J Polym Environ 21:245–258. https://doi.org/10.1007/s10924-012-0475-9

    Article  CAS  Google Scholar 

  26. Dang Z-M, Yuan J-K, Zha J-W et al (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  27. Mrudula MS, Gopinathan Nair MR (2020) Dielectric properties of natural rubber/polyethylene oxide block copolymer complexed with transition metal ions. Polym Bull 77:6029–6048. https://doi.org/10.1007/s00289-019-03035-z

    Article  CAS  Google Scholar 

  28. Kato A, Kokubo Y, Tsushi R, Ikeda Y (2014) Hydrophobic and hydrophilic silica-filled cross-linked natural rubber (NR): structure and properties chemistry manufacture and applications of natural rubber. Elsevier Inc, Hoboken, pp 193–215

    Google Scholar 

  29. Rattanasom N, Poonsuk A, Makmoon T (2005) Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends. Polym Test 24:728–732. https://doi.org/10.1016/j.polymertesting.2005.04.008

    Article  CAS  Google Scholar 

  30. Arguello JM, Santos A (2016) Hardness and compression resistance of natural rubber and synthetic rubber mixtures. J Phys Conf Ser 687:012088. https://doi.org/10.1088/1742-6596/687/1/012088

    Article  CAS  Google Scholar 

  31. Ramajo LA, Ramírez MA, Bueno PR et al (2008) Dielectric behaviour of CaCu3Ti4O12 -epoxy composites. Mater Res 11:85–88. https://doi.org/10.1590/S1516-14392008000100016

    Article  CAS  Google Scholar 

  32. Larguech S, Triki A, Ramachandran M, Kallel A (2020) Dielectric properties of jute fibers reinforced poly(lactic acid)/poly(butylene succinate) blend matrix. J Polym Environ. https://doi.org/10.1007/s10924-020-01927-0

    Article  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS) R/FRGS/A08.00/00880A/002/2014/000174, R/FRGS/A0800/00644A/003/2018/00557 and and UMK Rising Star Grant Scheme (R/STA/A1300/00880A/005/2021/00925). Special appreciation to Student Mobility Programme between Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan and Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus for research technical and student welfare support. The authors are grateful to Professor Dr. Hanafi Ismail, FASc, for his valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Azwadi Sulaiman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifuddin, S.M., Nor, M.S.M., Pabli, F.A.M. et al. Modification of curing, morphological, mechanical and electrical properties of epoxidised natural rubber (ENR-25) through the addition of copper calcium titanium oxide (CCTO). Polym. Bull. 79, 9907–9923 (2022). https://doi.org/10.1007/s00289-021-03995-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03995-1

Keywords

Navigation