Skip to main content

Advertisement

Log in

Characterization of As-prepared PVA-PEO/ZnO-Al2O3-NPs hybrid nanocomposite thin films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis, optical, mechanical, and structural characterization of organic–inorganic nanocomposite thin films based on polyethylene oxide and poly(vinyl alcohol) (PVA) polymers incorporated with (1:0), (0.75:0.25), (0.5:0.5), (0.25:0.75), and (0:1) content percentage ratios of ZnO-NPs: Al2O3-NPs nanoparticles are reported. The optical properties, including the absorption coefficient, refractive index, extinction coefficient, dielectric function, and optical band gap for the films, are investigated from the measured transmittance and reflectance using a newly derived mathematical model. The as-grown PVA-PEO polymeric thin films exhibit transmittance of 87% while it decreases down to 75% with ZnO-NPs and decreases in between by the addition of Al2O3-NPs. However, the refractive index increases from 2.0 with ZnO-NPs to 2.7 with Al2O3-NPs. The band gap energy is from 3.98 to 3.89 eV accordingly. The dislocation density\(,\) crystallite size, and average internal strain obtained from the X-ray diffraction patterns exhibit abnormal behavior for equal ratio (0.5:0.5) of the two types of NPs compared with other ratios. Fourier transform infrared (FTIR) spectroscopy measurements to elucidate the major vibrational modes and bonding in the nanocomposite thin films. A redshift of the major peaks has been observed for all investigated compositional ratios indicating a shift of the absorption edge confirming the band gap reduction. The SEM micrographs show a clear form of nanocomposites with PVA-PEO/ZnO-NPs compared to those when Al2O3-NPs or a combination of the two kinds of NPs are introduced to the complex matrix. Our detailed analysis of the physical properties of PVA-PEO/ZnO-Al2O3 indicates their potential to be candidate materials for modern optical and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hoffmann F et al (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Article  CAS  Google Scholar 

  2. Ghobadi S et al (2015) Graphene-reinforced poly (vinyl alcohol) electrospun fibers as building blocks for high performance nanocomposites. RSC Adv 5(103):85009–85018

    Article  CAS  Google Scholar 

  3. Fortunato EM et al (2005) Fully transparent ZnO thin-film transistor produced at room temperature. Adv Mater 17(5):590–594

    Article  CAS  Google Scholar 

  4. Chrissanthopoulos A et al (2007) Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation. Thin Solid Films 515(24):8524–8528

    Article  CAS  Google Scholar 

  5. Cheng H-M et al (2005) Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol–gel method. J Cryst Growth 277(1–4):192–199

    Article  CAS  Google Scholar 

  6. Moustakas, T., et al., Growth of III‐nitride quantum dots and their applications to blue‐green LEDs. physica status solidi (a), 2008. 205(11): p. 2560–2565.

  7. Bresser, D., et al., Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. 2019.

  8. Scrosati, B. and C.A.J.M.B. Vincent, Polymer electrolytes: the key to lithium polymer batteries. 2000. 25(3): p. 28–30.

  9. MJAM Armand 1990 Polymers with ionic conductivity 2 6–7 278 286

  10. Xue Z, He D, Xie X (2015) Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253

    Article  CAS  Google Scholar 

  11. Mindemark J et al (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143

    Article  CAS  Google Scholar 

  12. Lin D et al 2018 A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus 30 32 1802661

  13. Aldalur I et al 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes 383 144–149

  14. Karmakar, A. and A.J.C.A.P. Ghosh, Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. 2012. 12(2): p. 539–543.

  15. Xue, Z., D. He, and X.J.J.o.M.C.A. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. 2015. 3(38): p. 19218–19253.

  16. M‐Ali AL‐Akhras et al.,(2020). Studies of composite films of polyethylene oxide doped with potassium hexachloroplatinate. J Appl Poly Sci, 138, e49757.

  17. Mohammed, A.-T., et al., Optical Characterization of Thin Films Poly (Ethylene Oxide) Doped with Cesium Iodide. 2018.

  18. Aziz SB et al (2019) Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: new insights to band gap study. Results Phys 13:102220

    Article  Google Scholar 

  19. Kulkarni SS, Shirsat MD (2015) Optical and structural properties of zinc oxide nanoparticles. Int J Adv Res Phys Sci 2(1):14–18

    Google Scholar 

  20. Ge J et al (2010) Preparation and characterization of PS-PMMA/ZnO nanocomposite films with novel properties of high transparency and UV-shielding capacity. J Appl Polym Sci 118(3):1507–1512

    CAS  Google Scholar 

  21. Khrenov V et al (2005) Surface functionalized ZnO particles designed for the use in transparent nanocomposites. Macromol Chem Phys 206(1):95–101

    Article  CAS  Google Scholar 

  22. Hsu SC et al (2005) Effect of the polyimide structure and ZnO concentration on the morphology and characteristics of polyimide/ZnO nanohybrid films. Macromol Chem Phys 206(2):291–298

    Article  CAS  Google Scholar 

  23. Levine KL, Iroh JO, Kosel PB (2004) Synthesis and properties of the nanocomposite of zink oxide and poly (amic acid). Appl Surf Sci 230(1–4):24–33

    Article  CAS  Google Scholar 

  24. Hung C-H, Whang W-T (2005) Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly (hydroxyethyl methacrylate) nanohybrid films. J Mater Chem 15(2):267–274

    Article  CAS  Google Scholar 

  25. Abdullah M, Morimoto T, Okuyama K (2003) Generating blue and red luminescence from ZnO/Poly (ethylene glycol) nanocomposites prepared using an in-situ method. Adv Func Mater 13(10):800–804

    Article  CAS  Google Scholar 

  26. Xiong H-M, Zhao X, Chen J-S (2001) New polymer− inorganic nanocomposites: PEO− ZnO and PEO− ZnO− LiClO4 films. J Phys Chem B 105(42):10169–10174

    Article  CAS  Google Scholar 

  27. Zheng J, Siegel RW, Toney CG (2003) Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites. J Polym Sci, Part B: Polym Phys 41(10):1033–1050

    Article  CAS  Google Scholar 

  28. Womes M et al (2007) Study of the reaction mechanisms between Sn-(n-C4H9) 4 and alumina surface sites: application to the controlled preparation of PtSn/Al2O3 catalysts. J Mol Catal A: Chem 266(1–2):55–64

    Article  CAS  Google Scholar 

  29. Basset J-M, Lefebvre F, Santini C (1998) Surface organometallic chemistry: some fundamental features including the coordination effects of the support. Coord Chem Rev 178:1703–1723

    Article  Google Scholar 

  30. Hanemann T (2006) Influence of dispersants on the flow behaviour of unsaturated polyester–alumina composites. Compos A Appl Sci Manuf 37(5):735–741

    Article  Google Scholar 

  31. Sabir, S., M. Arshad, and S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal, 2014. 2014.

  32. Ramakanth, K., Basics of X-ray Diffraction and its Application. IK, New Delhi, 2007.

  33. Fu DW et al (2011) Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv Mater 23(47):5658–5662

    Article  CAS  PubMed  Google Scholar 

  34. Zak AK et al (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13(1):251–256

    Article  Google Scholar 

  35. Shull C (1946) The determination of X-ray diffraction line widths. Phys Rev 70(9–10):679

    Article  CAS  Google Scholar 

  36. Pielaszek, R., Diffraction studies of microstructure of nanocrystals exposed to high pressure. 2003, Ph. D. thesis, Warsaw University, Department of Physics, Warsaw, Poland.

  37. Zhang J-M et al (2006) General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun 139(3):87–91

    Article  CAS  Google Scholar 

  38. Valasek J (1921) Piezo-electric and allied phenomena in rochelle salt. Phys Rev 17(4):475

    Article  CAS  Google Scholar 

  39. Jona, F. and G. Shirane, Ferroelectric Crystals, International Series of Monographs on Solid State Physics. 1962: Pergamon press.

  40. Horiuchi S et al (2010) Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463(7282):789

    Article  CAS  PubMed  Google Scholar 

  41. Akl AA, Hassanien A (2015) Microstructure and crystal imperfections of nanosized CdSxSe1− x thermally evaporated thin films. Superlattices Microstruct 85:67–81

    Article  CAS  Google Scholar 

  42. Akl AA et al (2018) Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater Sci Semicond Process 74:183–192

    Article  CAS  Google Scholar 

  43. Williamson G, Smallman R III (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Phil Mag 1(1):34–46

    Article  CAS  Google Scholar 

  44. Al-Bataineh QM et al (2020) A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles. Heliyon 6(6):e04177

    Article  PubMed  PubMed Central  Google Scholar 

  45. Atkins, P.W., L. Jones, and B. Straushein, Chemistry: molecules, matter, and change. Vol. 354. 1997: WH Freeman New York.

  46. Ahmad A et al (2018) Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl Phys A 124(6):458

    Article  Google Scholar 

  47. Hassanien AS, Akl AA (2018) Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl Phys A 124(11):752

    Article  CAS  Google Scholar 

  48. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324

    Article  CAS  Google Scholar 

  49. Parmar R et al (2014) Iron modified structural and optical spectral properties of bismuth silicate glasses. Phys B 450:39–44

    Article  CAS  Google Scholar 

  50. Melsheimer J, Ziegler D (1985) Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide. Thin Solid Films 129(1–2):35–47

    Article  CAS  Google Scholar 

  51. Ikhmayies SJ, Ahmad-Bitar RN (2013) A study of the optical bandgap energy and urbach tail of spray-deposited CdS: in thin films. J Market Res 2(3):221–227

    CAS  Google Scholar 

  52. Aly K et al (2011) Optical properties of Ge–As–Te thin films. Phys B 406(22):4227–4232

    Article  CAS  Google Scholar 

  53. Chamroukhi H et al (2018) Optical and structural properties enhancement of hybrid nanocomposites thin films based on polyaniline doped with Zinc Oxide embedded in bimodal mesoporous silica (ZnO@ SiOX) nanoparticles. Opt Mater 84:703–713

    Article  CAS  Google Scholar 

  54. Duerloo K-AN, Ong MT, Reed EJ (2012) Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 3(19):2871–2876

    Article  CAS  Google Scholar 

  55. Oubaha M et al (2012) Optical properties of high refractive index thin films processed at low-temperature. Opt Mater 34(8):1366–1370

    Article  CAS  Google Scholar 

  56. Hassanien AS, Sharma I (2019) Optical properties of quaternary a-Ge15-x Sbx Se50 Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. Optik 200:163415

    Article  Google Scholar 

  57. Wemple S, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(4):1338

    Article  Google Scholar 

  58. Hassanien AS, Akl AA (2015) Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J Alloy Compd 648:280–290

    Article  CAS  Google Scholar 

  59. Wemple S, DiDomenico M Jr (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23(20):1156

    Article  CAS  Google Scholar 

  60. Badran HA et al (2016) Determination of optical constants and nonlinear optical coefficients of Violet 1-doped polyvinyl alcohol thin film. Pramana 86(1):135–145

    Article  CAS  Google Scholar 

  61. Okutan M et al (2005) Investigation of refractive index dispersion and electrical properties in carbon nano-balls’ doped nematic liquid crystals. Physica B 362(1–4):180–186

    Article  CAS  Google Scholar 

  62. Jundale D et al (2011) Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization. J Sens Technol 1:36–46

    Article  CAS  Google Scholar 

  63. Singh A, Vishwakarma H (2015) Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater Sci-Pol 33(4):751–759

    Article  CAS  Google Scholar 

  64. Kumarasinghe P et al (2017) Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated CdTe thin films. Mater Sci Semicond Process 58:51–60

    Article  CAS  Google Scholar 

  65. Caglar Y (2013) Sol–gel derived nanostructure undoped and cobalt doped ZnO: structural, optical and electrical studies. J Alloy Compd 560:181–188

    Article  CAS  Google Scholar 

  66. Li J et al (2014) Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing. Sens Actuators, B Chem 191:619–624

    Article  CAS  Google Scholar 

  67. Fasasi A et al (2018) Effect of precursor solvents on the optical properties of copper oxide thin films deposited using spray pyrolysis for optoelectronic applications. Amer J Mater Synth Process 3:12–22

    Google Scholar 

  68. Spitzer W, Fan H (1957) Determination of optical constants and carrier effective mass of semiconductors. Phys Rev 106(5):882

    Article  CAS  Google Scholar 

  69. Hassanien AS (2016) Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50− xSex thin films. J Alloy Compd 671:566–578

    Article  CAS  Google Scholar 

  70. Farag A, Ashery A, Shenashen M (2012) Optical absorption and spectrophotometric studies on the optical constants and dielectric of poly (o-toluidine)(POT) films grown by spin coating deposition. Physica B 407(13):2404–2411

    Article  CAS  Google Scholar 

  71. Ibupoto Z et al (2013) Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications. Sensors 13(6):7926–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benchaabane A et al (2016) Influence of nanocrystal concentration on the performance of hybrid P3HT: TBPO-capped CdSe nanocrystal solar cells. Appl Phys A 122(2):60

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jordan University of Science and Technology in Jordan for the support provided by the Deanship of Scientific Research on project No. 2018/0246. The authors would like to thank Prof. Borhan Albiss and Prof. M-Ali Al-Akhras for their help in using the facilities in the Center of Nanotechnology and the Lab. of Biomedical Physics.

Author information

Authors and Affiliations

Authors

Contributions

AAA: Data Curation, Methodology, Data acquisition, Writing-Original draft preparation, Data Curation, Software, Supervision; MHK: Data Curation, Methodology, Data acquisition, Writing-Original draft preparation, Data Curation, Software; AMA: Data Curation, Methodology, Data acquisition, Writing-Original draft preparation, Supervision; QMAB: Investigation, Data acquisition, analysis, Writing-Original draft preparation, Conceptualization, Methodology, Supervision; ADT: Investigation, analysis, and Conceptualization.

Corresponding author

Correspondence to Ahmad M. Alsaad.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A., Khazaleh, M.H., Alsaad, A.M. et al. Characterization of As-prepared PVA-PEO/ZnO-Al2O3-NPs hybrid nanocomposite thin films. Polym. Bull. 79, 9881–9905 (2022). https://doi.org/10.1007/s00289-021-03969-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03969-3

Keywords

Navigation