Skip to main content

Advertisement

Log in

Influence of nanocrystal concentration on the performance of hybrid P3HT:TBPO-capped CdSe nanocrystal solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hybrid solar cells based on the polymer poly(3-hexylthiophene) (P3HT) and colloidal TBPO-capped CdSe nanocrystals (NCs) have been studied using varying amounts of CdSe NCs. The power conversion efficiency of these devices increased monotonically from η p = 0.05 % for 0 wt% NCs under white light illumination to 0.25 % for 40 wt% and then decreased to 0.07 % for 60 wt% NCs. The improvement in efficiency was mainly due to a remarkable increase in both the short-circuit current and open-circuit voltage, whereas the fill factor was less affected. In addition, the PL spectra of these devices showed a significant quenching suggesting rapid charge or energy transfer at the polymer–nanocrystal interface. The results indicate that capping with the smaller TBPO ligand did not considerably passivate the CdSe nanocrystal surface and the improvement in device performance could be mainly due to a pronounced PL quenching. The effect of using a relatively small TBPO compared to the commonly used TOPO ligand on the performance of these devices is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.H. Lee, D.H. Kim, N.S. Arul, T.W. Kim, Appl. Surf. Sci. 268, 156–162 (2013)

    Article  ADS  Google Scholar 

  2. M.C. Scharber, N.S. Sariciftci, Prog. Polym. Sci. 38, 1929–1940 (2013)

    Article  Google Scholar 

  3. Y. Park, D.W. Suh, K.S. Choi, J.S. Yoo, J. Ham, J. Lee, S.Y. Kim, Org. Electron. 14, 1021–1026 (2013)

    Article  Google Scholar 

  4. B. Rand, P. Peumans, S.R. Forrest, J. Appl. Phys. 96, 7519 (2012)

    Article  ADS  Google Scholar 

  5. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, G. Mathian, Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009)

    Article  Google Scholar 

  6. M.D. Brown, T. Suteewong, R.S.S. Kumar, V. D’Innocenzo, A. Petrozza, M.M. Lee, U. Wiesner et al., Nano Lett. 11, 438–445 (2011)

    Article  ADS  Google Scholar 

  7. A.J. Heeger, J. Phys. Chem. B 105, 8475–8491 (2001)

    Article  Google Scholar 

  8. K.M. Coakley, M.D. McGehee, Chem. Mater. 16, 4533–4542 (2004)

    Article  Google Scholar 

  9. C.B. Murray, D.J. Noms, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  Google Scholar 

  10. J.L. Birman, N.Q. Huong, J. Lumin. 125, 196–200 (2007)

    Article  Google Scholar 

  11. H. Kim, M. Achermann, L.P. Balet, J.A. Hollingsworth, V.I. Klimov, J. Am. Chem. Soc. 127, 544–546 (2005)

    Article  Google Scholar 

  12. A.J. Moule, L. Chang, C. Thambidurai, R. Vidu, P. Stroeve, J. Mater. Chem. 22, 2351–2368 (2012)

    Article  Google Scholar 

  13. P.D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 35, 1195–1208 (2006)

    Article  Google Scholar 

  14. M.D. McGehee, MRS Bull. 34, 95–100 (2009)

    Article  Google Scholar 

  15. S.E. Habas, H.A.S. Platt, M.F.A.M. Van Hest, D.S. Ginley, Chem. Rev. 110, 6571–6594 (2010)

    Article  Google Scholar 

  16. T. Xu, Q. Qiao, Energy Environ. Sci. 4, 2700–2720 (2011)

    Article  Google Scholar 

  17. S.N. Sharma, H. Sharms, G. Singh, S.M. Shivaprasad, Mater. Chem. Phys. 110, 471–480 (2008)

    Article  Google Scholar 

  18. Y. Zhou, F.S. Riehle, Y. Yuan, H.F. Schleiermacher, M. Niggemann, G.A. Urban, M. Kruger, Appl. Phys. Lett. 96, 013304 (2010)

    Article  ADS  Google Scholar 

  19. S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, G. Rumbles, Nano Lett. 10, 239–242 (2010)

    Article  ADS  Google Scholar 

  20. K.F. Jeltsch, M. Schadel, J.B. Bonekamp, P. Niyamakom, F. Rauscher, H.W.A. Lademann, I. Dumsch, S. Allard, U. Scherf, K. Meerholz, Adv. Funct. Mater. 22, 397–404 (2012)

    Article  Google Scholar 

  21. W.F. Fu, Y. Shi, W.M. Qiu, L. Wang, Y.X. Nan, M.M. Shi, H.Y. Li, H.Z. Chen, Phys. Chem. Chem. Phys. 14, 12094–12098 (2012)

    Article  Google Scholar 

  22. M.J. Greaney, S. Das, D.H. Webber, S.E. Bradforth, R.L. Brutchey, ACS Nano 6, 4222–4230 (2012)

    Article  Google Scholar 

  23. Y. Wu, G. Zhang, Nano Lett. 10, 1628–1631 (2010)

    Article  ADS  Google Scholar 

  24. N. Radychev, I. Lokteva, F. Witt, J. Kolny-Olesiak, H. Borchert, J.r. Parisi, J. Phys. Chem. C 115, 14111–14122 (2011)

    Article  Google Scholar 

  25. R. Stalder, D. Xie, R. Zhou, J. Xue, J.R. Reynolds, K.S. Schanze, Chem. Mater. 24, 3143–3152 (2012)

    Article  Google Scholar 

  26. J.Y. Lek, L. Xi, B.E. Kardynal, L.H. Wong, Y.M. Lam, A.C.S. Appl, Mater. Interfaces 3, 287–292 (2011)

    Article  Google Scholar 

  27. X.X. Jiang, F. Chen, W.M. Qiu, Q.X. Yan, Y.X. Nan, H. Xu, L.G. Yang, H.Z. Chen, Sol. Energy Mater. Sol. Cells 94, 2223–2229 (2010)

    Article  Google Scholar 

  28. F. Teng, A. Tang, B. Feng, Z. Lou, Appl. Surf. Sci. 254, 6341–6345 (2008)

    Article  ADS  Google Scholar 

  29. J.J. Tauc, Non-Cryst Solids 149, 97–98 (1987)

    Google Scholar 

  30. T. Trindade, P. O’Brien, Chem. Mater. 9, 523–530 (1997)

    Article  Google Scholar 

  31. E. Campos-Gonzalez, P. Rodriguez-Fragozo, G. Gonzalez de la Cruz, J. Santoyo-Salazar, O. Zelaya-Angel, J. Cryst. Growth 338, 251–255 (2012)

    Article  ADS  Google Scholar 

  32. A. Manna, R. Bhattacharya, T.K. Das, S. Saha, Phys. B 406, 981–984 (2011)

    Article  ADS  Google Scholar 

  33. D.E. Motaung, G.F. Malgas, C.J. Arendse, S.E. Mavundla, C.J. Olophant, D. Knoesen, J. Mater. Sci. 44, 3192 (2009)

    Article  ADS  Google Scholar 

  34. N.T.N. Truong, W.K. Kim, U. Farva, X.D. Luo, C. Park, Sol. Energy Mater. Sol. Cells 95, 3009–3014 (2011)

    Article  Google Scholar 

  35. A. Bruno, T. Di Luccio, C. Borriello, F. Villani, S.A. Haque, C. Minarini, Energy Procedia 44, 167–175 (2014)

    Article  Google Scholar 

  36. N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54, 17628–17637 (1996)

    Article  ADS  Google Scholar 

  37. S.N. Sharm, T. Vats, N. Dhenadhayalan, P. Ramamurthy, A.K. Narula, Sol. Energy Mater. Sol. Cells 100, 6–15 (2012)

    Article  Google Scholar 

  38. A. Benchaabane, Z. Ben Hamed, F. Kouki, A. Zeinert, H. Bouchriha, Appl. Phys. A 120, 1149–1157 (2015)

    Article  ADS  Google Scholar 

  39. Z. BenHamed, N. Mastour, A. Benchaabane, F. Kouki, M.A. Sanhoury, H. Bouchriha, J. Lumin. 170, 30–36 (2016)

    Article  Google Scholar 

  40. J. Yang, A. Tang, R. Zhou, J. Xue, Sol. Energy Mater. Sol. Cells 95, 476–482 (2011)

    Article  Google Scholar 

  41. J. Sworakowski, G.F. Leal Ferreira, J. Phys. D Appl. Phys. 17, 135–139 (1984)

    Article  ADS  Google Scholar 

  42. A.V. Nenashev, M. Wiemer, F. Jansson, S.D. Baranovskii, J. Non-Cryst. Solids 358, 2508–2511 (2012)

    Article  ADS  Google Scholar 

  43. A. Benchaabane, Z. Ben Hamed, F. Kouki, M.A. Sanhoury, K. Zellama, A. Zeinert, H. Bouchriha, J. Appl. Phys. 115, 134313 (2014)

    Article  ADS  Google Scholar 

  44. J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, J. Am. Chem. Soc. 126, 13550–13559 (2004)

    Article  Google Scholar 

  45. C. Goh, R. Joseph Kline, M.D. McGehee, Appl. Phys. Lett. 86, 122110 (2005)

    Article  ADS  Google Scholar 

  46. M.S. Ryu, J. Jang, Sol. Energy Mater. Sol. Cells 95, 3015–3020 (2011)

    Article  Google Scholar 

  47. V.K. Verma, Y. Singh, R.N. Chauhan, R.S. Anand, J. Kumar, Integr. Ferroelectr. 120, 1–5 (2010)

    Article  Google Scholar 

  48. S. Dayal, M.O. Reese, A.J. Ferguson, D.S. Ginley, G. Rumbles, N. Kopidakis, S. Cells, Adv. Funct. Mater. 20, 2629–2635 (2010)

    Article  Google Scholar 

  49. B. Mazhari, Sol. Energy Mater. Sol. Cells 90, 1021–1033 (2006)

    Article  Google Scholar 

  50. D. Gupta, M. Bag, K.S. Narayan, Appl. Phys. Lett. 92, 093301 (2008)

    Article  ADS  Google Scholar 

  51. A. Kumar, S. Sista, Y. Yang, J. Appl. Phys. 105, 094512–094516 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benchaabane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchaabane, A., Ben Hamed, Z., Sanhoury, M.A. et al. Influence of nanocrystal concentration on the performance of hybrid P3HT:TBPO-capped CdSe nanocrystal solar cells. Appl. Phys. A 122, 60 (2016). https://doi.org/10.1007/s00339-015-9572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9572-7

Keywords

Navigation