Skip to main content
Log in

Effect of poling time on filtration properties of PVDF membranes treated in intense electric fields

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

It was found that treatment in intense electric fields (i.e., electrical poling) changed the microstructure and filtration performance of polyvinylidene fluoride (PVDF) microfiltration membranes. The effect of temperature, sample size and time on the electrical breakdown of membranes was studied. It was shown that the hydraulic permeability and flux of the membranes can be tuned by changing the poling time. The effect of electrical poling on rejection and molecular weight cutoff was more significant. It was also found that the electrical breakdown of PVDF membranes is a gradual process and a long exposure time to an intense electric field can have adverse effects on the separation performance of the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ulbricht M, Schuster O, Ansorge W, Ruetering M, Steiger P (2007) Influence of the strongly anisotropic cross-section morphology of a novel polyethersulfone microfiltration membrane on filtration performance. Sep Purif Technol 57:63–73

    Article  CAS  Google Scholar 

  2. Pinnau I, Freeman BD (2000) Formation and modification of polymeric membranes: overview. Membr Form Modif 744:1–22

    Article  CAS  Google Scholar 

  3. Li JF, Xu ZL, Yang H (2008) Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives. Polym Advan Technol 19:251–257

    Article  Google Scholar 

  4. Matsuyama H, Takida Y, Maki T, Teramoto M (2002) Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation. Polymer 43:5243–5248

    Article  CAS  Google Scholar 

  5. Rezac ME, Leroux JD, Chen HM, Paul DR, Koros WJ (1994) Effect of mild solvent posttreatments on the gas-transport properties of glassy polymer membranes. J Membr Sci 90:213–229

    Article  CAS  Google Scholar 

  6. Li RH, Barbari TA (1995) Performance of poly(vinyl alcohol) thin-gel composite ultrafiltration membranes. J Membr Sci 105:71–78

    Article  CAS  Google Scholar 

  7. Mohr JM, Paul DR, Tullos GL, Cassidy PE (1991) Gas-transport properties of a series of poly(ether ketone) polymers. Polymer 32:2387–2394

    Article  CAS  Google Scholar 

  8. Trushinski BJ, Dickson JM, Smyth T, Childs RF, McCarry BE (1998) Polysulfonamide thin-film composite reverse osmosis membranes. J Membr Sci 143:181–188

    Article  CAS  Google Scholar 

  9. Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T (1997) Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. J Membr Sci 134:245–253

    Article  CAS  Google Scholar 

  10. Hinestroza J, De Kee D, Pintauro PN (2001) Apparatus for studying the effect of mechanical deformation on the permeation of organics through polymeric films. Ind Eng Chem Res 40:2183–2187

    Article  CAS  Google Scholar 

  11. Puri P, Hinestroza J, De Kee D (2005) Transport of small molecules through mechanically elongated polymeric membranes. J Appl Polym Sci 96:1200–1203

    Article  CAS  Google Scholar 

  12. Seol WH, Lee YM, Park JK (2006) Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery. J Power Sources 163:247–251

    Article  CAS  Google Scholar 

  13. Coster HGL, Farahani TD, Chilcott TC (2010) Membrane and separation system. PCT/AU2010/001582, Australia

  14. Coster HGL, Farahani TD, Chilcott TC (2011) Production and characterization of piezo-electric membranes. Desalination 238:52–57

    Article  Google Scholar 

  15. Kishimoto A, Koumoto K, Yanagida H, Nameki M (1991) Microstructure dependence of mechanical and dielectric strengths-i. porosity. Eng Fract Mech 40:927–930

    Article  Google Scholar 

  16. Noskov MD, Cheglokov AA, Shapovalov AV (2001) Dynamics of the thermal instability evolution in dielectric breakdown. Rus Phys J 44:48–54

    Article  Google Scholar 

  17. Castano VM, Espinosa G (1990) Studies on the fractal structure of the dielectric-breakdown in polymer sheets. Mater Lett 9:365–368

    Article  CAS  Google Scholar 

  18. Zakrevskii VA, Sudar NT, Zaopo A, Dubitsky YA (2003) Mechanism of electrical degradation and breakdown of insulating polymers. J Appl Phys 93:2135–2139

    Article  CAS  Google Scholar 

  19. Kressmann R (2001) New piezoelectric polymer for air-borne and water-borne sound transducers. J Acoust Soc Am 109:1412–1416

    Article  CAS  Google Scholar 

  20. Darestani MT, Chilcott TC, Coster HGL (2014) Changing the microstructure of membranes using an intense electric field: filtration performance. J Membr Sci 449:158–168

    Article  CAS  Google Scholar 

  21. Darestani MT, Coster HGL, Chilcott TC (2013) Piezoelectric membranes for separation processes: operating conditions and filtration performance. J Membr Sci 435:226–232

    Article  CAS  Google Scholar 

  22. Darestani MT, Coster HGL, Chilcott TC, Fleming S, Nagarajan V, An H (2013) Piezoelectric membranes for separation processes: fabrication and piezoelectric properties. J Membr Sci 434:184–192

    Article  CAS  Google Scholar 

  23. Granz B (1989) PVDF hydrophone for the measurement of shock-waves. IEEE T Electr Insul 24:499–502

    Article  Google Scholar 

  24. Van der Bruggen B (2009) Chemical modification of polyethersulfone nanofiltration membranes: a review. J Appl Polym Sci 114:630–642

    Article  Google Scholar 

  25. Ochoa NA, Masuelli M, Marchese J (2003) Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J Membr Sci 226:203–211

    Article  CAS  Google Scholar 

  26. Yuan W, Zydney AL (1999) Humic acid fouling during microfiltration. J Membr Sci 157:1–12

    Article  CAS  Google Scholar 

  27. Xin Z, Zhao X, Suo Z, Chen Z, Runt J, Liu S, Shihai Z, Zhang QM (2009) Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Appl Phys Lett 94:162901–162903

    Article  Google Scholar 

  28. Fukada E (2000) History and recent progress in piezoelectric polymers. Ultrason Ferroelectr Freq Control IEEE Trans 47:1277–1290

    Article  CAS  Google Scholar 

  29. Ye YUN, Jiang Y, Wu Z, Zeng H (2006) Phase transitions of poly(vinylidene fluoride) under electric fields. Integr Ferroelectr 80:245–251

    Article  CAS  Google Scholar 

  30. Gerson R, Marshall TC (1959) Dielectric breakdown of porous ceramics. J Appl Phys 30:1650–1653

    Article  CAS  Google Scholar 

  31. Yiang KY, Yoo WJ, Krishnamoorthy A (2005) Effect of porosity on electrical stability of hydrocarbon polymeric low-k dielectric. IEEE T Electron Dev 52:2333–2336

    Article  CAS  Google Scholar 

  32. Mochizuki S, Zydney AL (1993) Theoretical-analysis of pore-size distribution effects on membrane-transport. J Membr Sci 82:211–227

    Article  CAS  Google Scholar 

  33. Yasuda H, Tsai JT (1974) Pore-size of microporous polymer membranes. J Appl Polym Sci 18:805–819

    Article  CAS  Google Scholar 

  34. Darestani MT, Chilcott TC, Coster HGL (2013) Separation performance of PVDF membranes poled in intense electric fields. Sep Purif Technol 118:604–611

    Article  CAS  Google Scholar 

  35. Meenakshi G, Khare ML, Bhatnagar CS (1985) Charge characteristics of thermomagnetically treated poly(vinylidene fluoride) films. Acta Polym 36:578–580

    Article  CAS  Google Scholar 

  36. Shepard JF, Moses PJ, Trolier-McKinstry S (1998) The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d(31)) of PZT thin films. Sensor Actuat a-Phys 71:133–138

    Article  CAS  Google Scholar 

  37. Kim DG, Kim HG (1999) Piezoelectric properties of lead zirconate titanate thin films characterized by the pneumatic loading method. Integr Ferroelectr 24:107–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the assistance of the staff of AMMRF (Australian Microscopy & Microanalysis Research Facility) at the Electron Microscope Unit of the University of Sydney. We thank Dr. Bogumil Eichstaedt for his help in setting up the electrical poling rig and Sydnovate at Sydney University for financial support for this project. M.T.D acknowledges the support of the University of Sydney and the Australian government through an Endeavour International Postgraduate Research Scholarship (EIPRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. L. Coster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darestani, M.T., Chilcott, T.C. & Coster, H.G.L. Effect of poling time on filtration properties of PVDF membranes treated in intense electric fields. Polym. Bull. 71, 951–964 (2014). https://doi.org/10.1007/s00289-014-1103-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1103-8

Keywords

Navigation