Skip to main content
Log in

Effect of hydrophilic silica and dual coagulation bath on structural and mechanical properties of PVDF membrane for membrane distillation

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The water scarcity threatens environmental health and human development. Membrane distillation (MD) is one of the most applicable processes for purifying water using a hydrophobic membrane. In this study, the synergetic effect of SiO2 nanoparticles as well as employing the dual coagulation bath on physical and mechanical properties of Polyvinylidene Fluoride (PVDF) flat-sheet membranes produced by dry-wet phase inversion (DIPS) technique has been investigated. The results of microstructural analysis using Scanning Electron Microscope (SEM) demonstrated that by adding nanoparticles while the pore size decreased noticeably, the percentage of porosity significantly increased. Also, it has been revealed that by utilizing isopropanol as the first coagulation bath the finger-like macro-voids became smaller in size, and the share of sponge-like structures rose remarkably. The membrane performance was tested by Vacuum Membrane Distillation (VMD) for measuring the flux and Liquid Entry Pressure (LEPw) laboratory setup. It can be seen that by increasing the content of SiO2 nanoparticles to 6 wt.% while the LEPw approximately halved, the flux soared to about 10000 g/m2h. Moreover, mechanical testing showed that although the tensile strength of nanocomposite samples fabricated in isopropanol dual coagulation bath was improved by up to 66%, their ductility slightly declined. Furthermore, the hydrophobicity of each membrane was examined via contact angle measurements. Finally, it was found that all membranes completely rejected the NaCl in rejection test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jalali S, Mehrabadi AR, Shayegan J, Mirabi M, Madaeni SS. Flux enhancement of thin-film composite membrane by graphene oxide incorporation. J Environ Heal Sci Eng. 2019;17(1):377–82.

    Article  CAS  Google Scholar 

  2. Camacho LM, et al. Advances in membrane distillation for water desalination and purification applications. Water. 2013;5(1):94–196.

    Article  Google Scholar 

  3. Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18.

    Article  CAS  Google Scholar 

  4. García-Payo MDC, Izquierdo-Gil MA, Fernández-Pineda C. Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions. J Colloid Interface Sci. 2000;230(2):420–31.

    Article  Google Scholar 

  5. Elizalde CNB, Al-Gharabli S, Kujawa J, Mavukkandy M, Hasan SW, Arafat HA. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Sep Purif Technol. 2018;190:68–76.

    Article  CAS  Google Scholar 

  6. Hilal N, Ismail AF, Wright C, Membrane fabrication. Boca Raton: CRC Press; 2015.

  7. Mokhtar NM, Lau WJ, Ismail AF. The potential of membrane distillation in recovering water from hot dyeing solution. J Water Process Eng. 2014;2:71–8.

    Article  Google Scholar 

  8. Wang Q, Wang X, Wang Z, Huang J, Wang Y. PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J Memb Sci. 2013;442:57–64.

    Article  CAS  Google Scholar 

  9. Niksefat N, Jahanshahi M, Rahimpour A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination. 2014;343:140–6.

    Article  CAS  Google Scholar 

  10. Yu L-Y, Xu Z-L, Shen H-M, Yang H. Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J Memb Sci. 2009;337:1–2.

    Article  Google Scholar 

  11. Bhadra M, Roy S, Mitra S. Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep Purif Technol. 2013;120:373–7.

    Article  CAS  Google Scholar 

  12. Liu F, Abed MRM, Li K. Preparation and characterization of poly (vinylidene fluoride)(PVDF) based ultrafiltration membranes using nano γ-Al2O3. J Memb Sci. 2011;366:1–2.

    Article  Google Scholar 

  13. Ma N, Wei J, Liao R, Tang CY. Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. J Memb Sci. 2012;405:149–57.

    Article  Google Scholar 

  14. Lind ML, et al. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir. 2009;25(17):10139–45.

    Article  CAS  Google Scholar 

  15. Hou D, Wang J, Sun X, Ji Z, Luan Z. Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. J Memb Sci. 2012;405:185–200.

    Article  Google Scholar 

  16. Hou D, Dai G, Fan H, Wang J, Zhao C, Huang H. Effects of calcium carbonate nano-particles on the properties of PVDF/nonwoven fabric flat-sheet composite membranes for direct contact membrane distillation. Desalination. 2014;347:25–33.

    Article  CAS  Google Scholar 

  17. Baghbanzadeh M, Rana D, Matsuura T, Lan CQ. Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes. Desalination. 2015;369:75–84.

    Article  CAS  Google Scholar 

  18. Efome JE, Baghbanzadeh M, Rana D, Matsuura T, Lan CQ. Effects of superhydrophobic SiO 2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination. 2015;373:47–57.

    Article  CAS  Google Scholar 

  19. Baghbanzadeh M, Rana D, Lan CQ, Matsuura T. Effects of hydrophilic silica nanoparticles and backing material in improving the structure and performance of VMD PVDF membranes. Sep Purif Technol. 2016;157:60–71.

    Article  CAS  Google Scholar 

  20. Zhou R, Rana D, Matsuura T, Lan CQ. Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Sep Purif Technol. 2019;217:154–63.

    Article  CAS  Google Scholar 

  21. Yatim M, Suhaili N, Boon Seng O. Fluorosilaned-TiO2/PVDF Membrane Distillation with Improved Wetting Resistance for Water Recovery from High Solid Loading Wastewater. J Membr Sci Res. 2019;5(1):55–64.

    CAS  Google Scholar 

  22. Tian R, et al. Coupling effect of PVDF molar mass and carboxyl content in CNTs on microstructure and thermal properties of CNT/PVDF composites. Mater Res Express. 2018;5(6):65031.

    Article  Google Scholar 

  23. Ali I, et al. Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition. Membranes (Basel). 2018;8(1):13.

    Article  Google Scholar 

  24. Yuliwati E, Ismail AF. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination. 2011;273(1):226–34.

    Article  CAS  Google Scholar 

  25. Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.

    Article  CAS  Google Scholar 

  26. Sun H, Liu Y, Li D, Liu B, Yao J. Hydrophobic SiO2 nanoparticle-induced polyvinylidene fluoride crystal phase inversion to enhance permeability of thin film composite membrane. J Appl Polym Sci. 2019.

  27. Koca HD, Doganay S, Turgut A, Tavman IH, Saidur R, Mahbubul IM. Effect of particle size on the viscosity of nanofluids: A review. Renew Sustain Energy Rev. 2018;82:1664–74.

    Article  CAS  Google Scholar 

  28. Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem Eng J. 2014;237:70–80.

    Article  CAS  Google Scholar 

  29. Sukitpaneenit P, Chung T-S. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Memb Sci. 2009;340(1):192–205.

    Article  CAS  Google Scholar 

  30. Mavukkandy MO, Bilad MR, Kujawa J, Al-Gharabli S, Arafat HA. On the effect of fumed silica particles on the structure, properties and application of PVDF membranes. Sep Purif Technol. 2017;187:365–73.

    Article  CAS  Google Scholar 

  31. Chen Z, Rana D, Matsuura T, Yang Y, Lan CQ. Study on the structure and vacuum membrane distillation performance of PVDF composite membranes: I. Influence of blending. Sep Purif Technol. 2014;133:303–12.

    Article  CAS  Google Scholar 

  32. Chen Z, Rana D, Matsuura T, Meng D, Lan CQ. Study on structure and vacuum membrane distillation performance of PVDF membranes: II. Influence of molecular weight. Chem Eng J. 2015;276:174–84.

    Article  CAS  Google Scholar 

  33. Shawky HA, Chae S-R, Lin S, Wiesner MR. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination. 2011;272:1–3.

    Article  Google Scholar 

  34. Mokarizadeh Haghighi Shirazi M, Zebarjad SM, Ebrahimi R. Effect of equal channel angular pressing on thermal and mechanical properties of carbon nanotube/high density polyethylene composite. Polym Adv Technol. 2018;29(2):736–45.

    Article  CAS  Google Scholar 

  35. Li Z, Rana D, Wang Z, Matsuura T, Lan CQ. Synergic effects of hydrophilic and hydrophobic nanoparticles on performance of nanocomposite distillation membranes: An experimental and numerical study. Sep Purif Technol. 2018;202:45–58.

    Article  CAS  Google Scholar 

  36. Tai ZS, Aziz MHA, Othman MHD, Ismail AF, Rahman MA, Jaafar J. An Overview of Membrane Distillation. In: Membrane Separation Principles and Applications. Amsterdam: Elsevier; 2019. pp. 251–281.

Download references

Acknowledgements

The authors would like to acknowledge University of Twente for technical support throughout the study generously.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirus Javadpour.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamirad, M.H., Javadpour, S. Effect of hydrophilic silica and dual coagulation bath on structural and mechanical properties of PVDF membrane for membrane distillation. J Environ Health Sci Engineer 18, 495–504 (2020). https://doi.org/10.1007/s40201-020-00477-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00477-w

Keywords

Navigation