Skip to main content
Log in

Isolation and Characterization of a Novel Laccase-Producing Bacteria Bhargavaea beijingensis from Paper and Pulp Effluent-Treated Soil Using In Silico Approaches

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Laccases (EC 1.10.3.2) are considered one of the most prominent multicopper enzymes that exhibit the inherent properties of oxidizing a range of phenolic substrates. Mostly, reported laccases have been isolated from the plants and fungi species, whereas bacterial laccases are yet to be explored. Bacterial laccases have numerous distinctive properties over fungal laccases, including stability at high temperatures and high pH. This study includes the isolation of bacteria through the soil sample collected from the paper and pulp industry; the highest laccase-producing bacteria was identified as Bhargavaea bejingensis, using 16S rRNA gene sequencing. The extracellular and intracellular activities after 24 h incubation were 1.41 U/mL and 4.95 U/mL, respectively. The laccase-encoding gene of the bacteria was sequenced; moreover, the in vitro translated protein was bioinformatically characterized and asserted that the laccase produced by the bacteria Bhargavaea bejingensis was structurally and sequentially homologous to the CotA protein of Bacillus subtilis. The enzyme laccase produced from B. bejingensis was classified as three-domain laccase with several copper-binding residues, where a few crucial copper-binding residues of the laccase enzyme were also predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the experimental data and material used are given within the manuscript.

Code Availability

Not applicable.

References

  1. Kumar M, Kumar P, Das P, Solanki R, Kapur MK (2020) Potential applications of extracellular enzymes from Streptomyces spp. in various industries. Arch Microbiol 202(7):1597–1615. https://doi.org/10.1007/s00203-020-01898-9

    Article  CAS  PubMed  Google Scholar 

  2. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107:232–249. https://doi.org/10.1016/j.rser.2019.03.008

    Article  CAS  Google Scholar 

  3. Mayolo-Deloisa K, González-González M, Rito-Palomares M (2020) Laccases in the food industry: bioprocessing, potential industrial and biotechnological applications. Front Bioeng Biotechnol 8:222. https://doi.org/10.3389/fbioe.2020.00222

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharma N, Leung IK (2021) Novel thermophilic bacterial laccase for the degradation of aromatic organic pollutants. Front Chem. https://doi.org/10.3389/fchem.2021.711345

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chmelova D, Legerska B, Kunstova J, Ondrejovic M, Miertus S (2022) The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 38(2):1–20. https://doi.org/10.1007/s11274-021-03207-y

    Article  CAS  Google Scholar 

  6. Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):1–20. https://doi.org/10.1007/s13205-017-0955-7

    Article  CAS  Google Scholar 

  7. Prins A, Kleinsmidt L, Khan N, Kirby B, Kudanga T, Vollmer J, Le Roes-Hill M (2015) The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3 (2). Enzym Microb Technol 68:23–32. https://doi.org/10.1016/j.enzmictec.2014.10.003

    Article  CAS  Google Scholar 

  8. Dai S, Yao Q, Yu G, Liu S, Yun J, Xiao X, Deng Z, Li H (2021) Biochemical characterization of a novel bacterial laccase and improvement of its efficiency by directed evolution on dye degradation. Front Microbiol 12:633004. https://doi.org/10.3389/fmicb.2021.633004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108(2):205–210. https://doi.org/10.1111/j.1574-6968.1993.tb06100.x

    Article  CAS  Google Scholar 

  10. Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 37(8):863–869. https://doi.org/10.1007/s10295-010-0734-5

    Article  CAS  PubMed  Google Scholar 

  11. Callejon S, Sendra R, Ferrer S, Pardo I (2016) Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Appl Microbiol Biotechnol 100(7):3113–3124. https://doi.org/10.1007/s00253-015-7158-0

    Article  CAS  PubMed  Google Scholar 

  12. Jiang YP, Cai JL, Pei JJ, Li Q, Zhao LG (2021) Cloning, overexpression, and characterization of a thermostable, organic solvent-tolerant laccase from Bacillus pumilus ARA and its application to dye decolorization. ACS Omega 6(14):9741–9749. https://doi.org/10.1021/acsomega.1c00370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chopra NK, Sondhi S (2022) Cloning, expression and characterization of laccase from Bacillus licheniformis NS2324 in E. coli application in dye decolorization. Int J Biol Macromol 206:1003–1011. https://doi.org/10.1016/j.ijbiomac.2022.03.104

    Article  CAS  PubMed  Google Scholar 

  14. Haq I, Mazumder P, Kalamdhad AS (2020) Recent advances in removal of lignin from paper industry wastewater and its industrial applications—a review. Bioresour Technol 312:123636. https://doi.org/10.1016/j.biortech.2020.123636

    Article  CAS  PubMed  Google Scholar 

  15. Singh AK, Chandra R (2019) Pollutants released from the pulp paper industry: aquatic toxicity and their health hazards. Aquat Toxicol 211:202–216. https://doi.org/10.1016/j.aquatox.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  16. Degryse E, Glansdorff N, Piérard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117(2):189–196. https://doi.org/10.1007/BF00402307

    Article  CAS  PubMed  Google Scholar 

  17. Dhiman K, Shirkot P (2015) Bioprospecting and molecular characterization of laccase producing bacteria from paper mills of Himachal Pradesh. Proc Natl Acad Sci India Sect B Biol Sci 85(4):1095–1103. https://doi.org/10.1007/s40011-015-0541-x

    Article  CAS  Google Scholar 

  18. Kalra K, Chauhan R, Shavez M, Sachdeva S (2013) Isolation of laccase producing Trichoderma Spp. and effect. Int J ChemTech Res 5:2229–2235. https://doi.org/10.20902/IJCR.2013.6547861

    Article  CAS  Google Scholar 

  19. Wang YS, Liu L, Fu Q, Sun J, An ZY, Ding R, Li Y, Zhao XD (2020) Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-62809-y

    Article  CAS  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics 10(2):189–191. https://doi.org/10.1093/bioinformatics/10.2.189

    Article  CAS  Google Scholar 

  22. Deleage G, Roux B (1987) An algorithm for protein secondary structure prediction based on class prediction. Protein Eng Des Sel 1(4):289–294. https://doi.org/10.1093/protein/1.4.289

    Article  CAS  Google Scholar 

  23. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  24. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Whitman WB (eds) (2011) Bergey’s manual of systematic bacteriology: volume 3: the Firmicutes, vol 3. Springer Science & Business Media, Berlin. https://doi.org/10.1007/b92997

    Book  Google Scholar 

  25. Enguita FJ, Matias PM, Martins LIO, Plácido D, Henriques AO, Carrondo MA (2002) Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Acta Crystallogr D 58(9):1490–1493. https://doi.org/10.1107/S0907444902011575

    Article  CAS  PubMed  Google Scholar 

  26. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66(1):12–21. https://doi.org/10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  27. Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342. https://doi.org/10.1016/j.ecoenv.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  28. Sharma D, Chaudhary R, Kaur J, Arya SK (2020) Greener approach for pulp and paper industry by xylanase and laccase. Biocatal Agric Biotechnol 25:101604. https://doi.org/10.1016/j.bcab.2020.101604

    Article  Google Scholar 

  29. Singh G, Arya SK (2019) Utility of laccase in pulp and paper industry: a progressive step towards the green technology. Int J Biol Macromol 134:1070–1084. https://doi.org/10.1016/j.ijbiomac.2019.05.168

    Article  CAS  PubMed  Google Scholar 

  30. Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A (2020) Laccase properties, physiological functions, and evolution. Int J Mol Sci 21(3):966. https://doi.org/10.3390/ijms21030966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, de Los H, Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MC, Trujillo-Roldán MA, Valdez-Cruz NA (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18(1):1–33. https://doi.org/10.1186/s12934-019-1248-0

    Article  CAS  Google Scholar 

  32. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277(21):18849–18859. https://doi.org/10.1074/jbc.M200827200

    Article  CAS  PubMed  Google Scholar 

  33. Trubitsina LI, Tishchenko SV, Gabdulkhakov AG, Lisov AV, Zakharova MV, Leontievsky AA (2015) Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie 112:151–159. https://doi.org/10.1016/j.biochi.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  34. Singh G, Singh S, Kaur K, Arya SK, Sharma P (2019) Thermo and halo tolerant laccase from Bacillus sp. SS4: evaluation for its industrial usefulness. J Gen Appl Microbiol 65(1):26–33. https://doi.org/10.2323/jgam.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  35. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol 79:597–603. https://doi.org/10.1007/s00253-008-1475-5

    Article  CAS  PubMed  Google Scholar 

  36. Brander S, Mikkelsen JD, Kepp KP (2014) Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS ONE 9(6):e99402. https://doi.org/10.1371/journal.pone.0099402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garg G, Dhiman SS, Mahajan R, Kaur A, Sharma J (2011) Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp. New Biotechnol 28(1):58–64. https://doi.org/10.1016/j.nbt.2010.07.020

    Article  CAS  Google Scholar 

  38. Mehandia S, Sharma SC, Arya SK (2020) Isolation and characterization of an alkali and thermostable laccase from a novel Alcaligenes faecalis and its application in decolorization of synthetic dyes. Biotechnol Rep 25:e00413. https://doi.org/10.1016/j.btre.2019.e00413

    Article  Google Scholar 

  39. Dhiman SS, Garg G, Mahajan R, Garg N, Sharma J (2009) ‘Single lay out’ and ‘mixed lay out’ enzymatic processes for bio-bleaching of kraft pulp. Bioresour Technol 100(20):4736–4741. https://doi.org/10.1016/j.biortech.2009.04.059

    Article  CAS  PubMed  Google Scholar 

  40. Kapoor M, Kapoor RK, Kuhad RC (2007) Differential and synergistic effects of xylanase and laccase mediator system (LMS) in bleaching of soda and waste pulps. J Appl Microbiol 103(2):305–317. https://doi.org/10.1111/j.1365-2672.2006.03251.x

    Article  CAS  PubMed  Google Scholar 

  41. Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta R, Kuhad RC (2014) Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol 169:96–102. https://doi.org/10.1016/j.biortech.2014.06.066

    Article  CAS  PubMed  Google Scholar 

  42. Qiu F, Zhang X, Liu L, Sun L, Schumann P, Song W (2009) Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 59(4):729–734. https://doi.org/10.1099/ijs.0.65861-0

    Article  CAS  PubMed  Google Scholar 

  43. Verma P, Pandey PK, Gupta AK, Seong CN, Park SC, Choe HN, Baik KS, Patole MS, Shouche YS (2012) Reclassification of Bacillus beijingensis Qiu et al. 2009 and Bacillus ginsengi Qiu et al. 2009 as Bhargavaea beijingensis comb. nov. and Bhargavaea ginsengi comb. nov. and emended description of the genus Bhargavaea. Int J Syst Evol Microbiol 62(Pt_10):2495–2504. https://doi.org/10.1099/ijs.0.034850-0

    Article  CAS  PubMed  Google Scholar 

  44. Shivaji S, Ara S, Begum Z, Ruth M, Singh A, Kumar Pinnaka A (2013) Draft genome sequence of Bhargavaea cecembensis strain DSE10T, isolated from a deep-sea sediment sample collected at a depth of 5,904 m from the Chagos-Laccadive ridge system in the Indian Ocean. Genome Announc 1(3):e00346-e413. https://doi.org/10.1128/genomeA.00346-13

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tian FH, Fan DY, Zhang C, Jia CW, Gao W, Li Y, Li CT (2018) Bhargavaea changchunensis sp. nov. isolated from soil in China. Arch Microbiol 200(10):1465–1470. https://doi.org/10.1007/s00203-018-1563-6

    Article  CAS  PubMed  Google Scholar 

  46. Janusz G, Pawlik A, Swiderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczynski A (2020) Laccase properties, physiological functions, and evolution. Int J Mol Sci 21(3):966. https://doi.org/10.3390/ijms21030966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13(9):2388–2397. https://doi.org/10.1110/ps.04759104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gunne M, Höppner A, Hagedoorn PL, Urlacher VB (2014) Structural and redox properties of the small laccase S sl1 from Streptomyces sviceus. FEBS J 281(18):4307–4318. https://doi.org/10.1111/febs.12755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SC and SP designed the methodology and conceptualized the experiments, analyzed the data, and interpreted the results. SC and RP performed the investigation, analysis, and validation. SC, RP, MM, and SP were involved in editing. AV provided the laboratory to perform the experiments. All the authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Ram Prasad or Shalini Porwal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

We Dr. Shalini Porwal and Dr. Ram Prasad give the consent to participate in Current Microbiology.

Consent for Publication

We Dr. Shalini Porwal and Dr. Ram Prasad give the consent to publish in Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1598 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Varma, A., Mandal, M. et al. Isolation and Characterization of a Novel Laccase-Producing Bacteria Bhargavaea beijingensis from Paper and Pulp Effluent-Treated Soil Using In Silico Approaches. Curr Microbiol 80, 241 (2023). https://doi.org/10.1007/s00284-023-03346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03346-5

Navigation