Skip to main content
Log in

Antagonistic Activity of Pseudomonas fluorescens Strain X1 Against Different Fusaria and it’s In Vivo Analysis Against Fusarium udum Infected Pigeon Pea

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A plant growth-promoting rhizobacterial strain, Pseudomonas fluorescens X1 isolated from the garden soil was employed for antagonistic activity against different species of fusaria. Strain X1 inhibited four different fusaria (Fusarium moniliforme, Fusarium oxysporum, Fusarium semitectum and Fusarium udum) in dual culture plate assay, and in broth culture using cell-free culture filtrate. Scanning electron microscopic (SEM) analysis revealed deformation and shrinkage in mycelia of fusaria after treatment with strain X1. Confocal micrographs showed degeneration of nuclei inside the cells of fusaria for the same effect. Strain X1 exhibited maximum antifungal activity, when it was grown in nutrient broth yeast (NBY) medium amended with 1 mM NH4MoO4 and 1% glucose. The antifungal extracts eluted from thin-layer chromatography (TLC) followed by high performance liquid chromatography (HPLC) showed two fractions active against different fusaria. Liquid chromatography-mass spectrometry (LCMS) analysis of the two fractions 1 and 2 corresponded to molecular ions at m/z 177.16 and m/z 177.09, respectively. Infra-red (IR) analysis showed five similar absorption bands in both the fractions analysed. In vivo analysis of strain X1 alone and along with fungicide inhibited the growth of F. udum and improved the biomass and growth of pigeon pea. These results indicated that strain X1 could be possibly used as a biocontrol agent to inhibit the growth of soil-borne diseases of different fusaria including F. udum that causes wilting in pigeon pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 232:126389

    Article  CAS  PubMed  Google Scholar 

  • Arjona-López JM, Tienda S, Arjona-Girona I, Cazorla FM, López-Herrera CJ (2019) Combination of low concentrations of fluazinam and antagonistic rhizobacteria to control avocado white root rot. Biol Cont 136:103996

    Article  Google Scholar 

  • Chen K, Tian Z, Luo Y, Cheng Y, Long CA (2018) Antagonistic activity and the mechanism of Bacillus amyloliquefaciens dh-4 against citrus green mold. Phytopathology 108(11):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • David BV, Chandrasehar G, Selvam PN (2018) Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In: Nailwal TK, Bhatt P (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 221–243

    Google Scholar 

  • del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S (2019) Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopathogens. Front Microbiol 19(10):2888

    Article  Google Scholar 

  • Deora A, Hashidoko Y, Tahara S (2008) Antagonistic effects of Pseudomonas jessenii against Pythium aphanidermatum: morphological, ultrastructural and cytochemical aspects. J Basic Microbiol 48:71–81

    Article  PubMed  Google Scholar 

  • El-Banna N, Winkelmann W (1998) Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78

    Article  CAS  PubMed  Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biol Control. 103:62–68

    Article  Google Scholar 

  • Gordon TR (2017) Fusarium oxysporum and the Fusarium wilt syndrome. Ann Rev Phytopathol 55:23–39

    Article  CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertil Soils 35:399–405

    Article  CAS  Google Scholar 

  • Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review. Environ Toxicol Pharmacol 11:309–320

    Article  CAS  PubMed  Google Scholar 

  • Hamid M, Siddiqui IA, Shaukat S (2003) Improvement of Pseudomonas fluorescens CHA0 biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Lett Appl Microbiol 36:239–244

    Article  CAS  PubMed  Google Scholar 

  • Hayat H, Ali S, Umma A (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Ji Z, Wang XJ, Yan YJ, Jiang L, Wang JD, Li BJ, Xiang WS (2010) Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity. Biores Technol 101:8383–8388

    Article  Google Scholar 

  • Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, Lu F, Zhao H (2016) Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol 16(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconoc acid: an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67:595–604

    Article  CAS  PubMed  Google Scholar 

  • Kotresh H, Fakrudin B, Punnuri S, Rajkumar B, Thudi M, Parmesh H (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan L. Millsp.). Euphytica 149:113–120

    Article  CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Article  Google Scholar 

  • Latz E, Eisenhauer N, Rall BC, Allan E, Roscher C, Scheu S et al (2012) Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J Ecol 100:597–604

    Article  Google Scholar 

  • Li HY, Guo W, Liu D, Li MQ (2018) First Report of Fusarium semitectum causing root rot of greenhouse pepper (Capsicum annuum) in China. Plant Dis 102(10):2032

    Article  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Hernández-Cristóbal O, Guerrero-Analco JA, Reverchon F (2018) Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PloS one 13:3

    Article  Google Scholar 

  • Laisram N, Singh VP (2013) Bio control potential of a rhizospheric bacterial soil isolate X1. Vegetos 26:63–66

    Article  Google Scholar 

  • Nene YL, Sheela VK, Sharma SB (1996) A world list of chickpea and Pigeonpea pathogens, 5th edn. International Crops Research Institute for the Semi Arid Tropics (Semi-formal Publication), Patancheru

    Google Scholar 

  • Palma CA, Burrows RP, González MG, Sepúlveda BR, Moya-Elizondo EA (2019) Integration between Pseudomonas protegens strains and fluquinconazole for the control of take-all in wheat. Crop Protect 121:163–172

    Article  Google Scholar 

  • Pfenning LH, de Melo MP, Costa MM, Reis A, Cabral CS, Lima CS, Abreu LM, Costa SS (2019) Fusarium udum revisited: a common, but poorly understood member of the Fusarium fujikuroi species complex. Mycol. Prog 18(1–2):107–117

    Article  Google Scholar 

  • Pliego C, Crespo-Gómez JI, Pintado A, Pérez-Martínez I, de Vicente A, Cazorla FM, Ramos C (2019) Response of the biocontrol agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix exudate. Appl Environ Microbiol 85(3):e01741-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4(5):330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purohit A, Ganguly S, Ghosh G, Chaudhuri RK, Datta S, Chakraborti D (2017) Variability among isolates of Fusarium udum and the effect on progression of wilt in pigeonpea. European J Plant Pathol 149(1):73–87

    Article  CAS  Google Scholar 

  • Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47(6):486–491

    Article  CAS  PubMed  Google Scholar 

  • Reddy MV, Raju TN, Sharma SB, Nene YL, McDonald D, Pande S, Sharma M (2012) Handbook of Pigeon pea Diseases (Revised) Information Bulletin No 42. ICRISAT, Patancheru, p 12

    Google Scholar 

  • Rosado-Álvarez C, Molinero-Ruiz L, Rodríguez-Arcos R, Basallote-Ureba MJ (2014) Antifungal activity of Asparagus extracts against phytopathogenic Fusarium oxysporum. Scientia Horticult 171:51–57

    Article  Google Scholar 

  • Saxena KB, Kumar RV, Saxena RK, Sharma M, Srivastava RK, Sultana R, Varshney RK, Vales MI, Pande S (2012) Identification of dominant and recessive genes for resistance to Fusarium wilt in pigeonpea and their implication in breeding hybrids. Euphytica 188:221–227

    Article  CAS  Google Scholar 

  • Schweiger PF, Rouhier H, Söderström B (2002) Visualisation of ectomycorrhizal rhizomorph structure using laser scanning confocal microscopy. Mycol Res 106(3):349–354

    Article  Google Scholar 

  • Sharma M, Ghosh R, Telangre R, Rathore A, Saifulla M, Mahalinga DM, Saxena DR, Jain YK (2016) Environmental influences on pigeonpea-Fusarium udum interactions and stability of genotypes to Fusarium wilt. Front Plant Sci 7:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaukat SS, Siddiqui IA (2003) The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato. Lett Appl Microbiol 36(6):392–8

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Chhatpar HS (2011) Combined use of Streptomyces sp. A6 and chemical fungicides against Fusarium wilt of Cajanus cajan may reduce the dosage of fungicides required in the field. Crop Prot 30:770–775

    Article  CAS  Google Scholar 

  • Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 43:794–800

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, Farmer AD et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, Sharma TR, Rosen B, Carrasquilla-Garcia N, Farmer A et al (2010) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L). Mol Breed 26:393–408

    Article  CAS  PubMed  Google Scholar 

  • Wong CK, Saidi NB, Vadamalai G, Teh CY, Zulperi D (2019) Effect of bioformulations on the biocontrol efficacy, microbial viability and storage stability of a consortium of biocontrol agents against Fusarium wilt of banana. J Appl Microbiol 127(2):544–55

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Wang F, Zhang M, Ou T, Wang R, Strobel G, Xiang Z, Zhou Z, Xie J (2019) Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res 1(229):126328

    Article  Google Scholar 

  • Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

  • Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The financial assistance provided by the Department of Science & Technology, Govt. of India under the DST project SR/SO/PS-109/06 and R&D grant by the University of Delhi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

NL: designed and carried out the experiments and wrote the manuscript, ZR: wrote and edited the manuscript, and VPS: conceptualized the idea.

Corresponding author

Correspondence to Zeeshanur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3184_MOESM1_ESM.pptx

Supplementary file1 (PPTX 573 KB) Supplementary Fig 1. Antifungal activity of the purified compound (s), 1 and 2 against F. moniliforme (A), F. oxysporum (B), F. semitectum (C), and F. udum (D) and c in each plate refers to control.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laisram, N., Rahman, Z. & Singh, V.P. Antagonistic Activity of Pseudomonas fluorescens Strain X1 Against Different Fusaria and it’s In Vivo Analysis Against Fusarium udum Infected Pigeon Pea. Curr Microbiol 80, 98 (2023). https://doi.org/10.1007/s00284-023-03184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03184-5

Navigation