Skip to main content
Log in

Screening of Thiopeptide-Producing Streptomycetes Isolated From the Rhizosphere Soil of Juniperus excelsa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The identification of an increasing number of drug-resistant pathogens has stimulated the development of new therapeutic agents to combat them. Microbial natural products are among the most important elements when it comes to drug discovery. Today, thiopeptide antibiotics are receiving increasing research attention due to their potent activity against Gram-positive bacteria. In this study, we demonstrated the successful use of a whole-cell microbial biosensor (Streptomyces lividans TK24 pMO16) for the specific detection of thiopeptide antibiotics among the native actinomycete strains isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). Among the native strains, two strains of Streptomyces, namely sp. Je 1–79 and Je 1–613, were identified that were capable of producing thiopeptide antibiotics. A multilocus sequence analysis of five housekeeping genes (gyrB, atpD, recA, rpoB, and trpB) classified them as representatives of two different species of the genus Streptomyces. The thiopeptide antibiotics berninamycin A and B were identified in the extracts of the two strains by means of a dereplication analysis. The berninamycin biosynthetic gene cluster was also detected in the genome of the Streptomyces sp. Je 1–79 strain and showed a high level of similarity (93%) with the ber cluster from S. bernensis. Thus, the use of this whole-cell biosensor during the first stage of the screening process could serve to accelerate the specific detection of thiopeptide antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. PT 40(4):277–283

    Google Scholar 

  2. Mast Y, Stegmann E (2019) Actinomycetes: the antibiotics producers. Antibiotics (Basel) 8(3):105. https://doi.org/10.3390/antibiotics8030105

    Article  Google Scholar 

  3. Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232. https://doi.org/10.1039/c7np00026j

    Article  CAS  PubMed  Google Scholar 

  4. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  5. Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors (Basel) 13(5):5777–5795. https://doi.org/10.3390/s130505777

    Article  CAS  Google Scholar 

  6. Mascher T, Zimmer SL, Smith T-A, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48(8):2888–2896. https://doi.org/10.1128/AAC.48.8.2888-2896.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Revilla-Guarinos A, Dürr F, Popp PF et al (2020) Amphotericin B specifically induces the two-component system LnrJK: development of a novel whole-cell biosensor for the detection of amphotericin-like polyenes. Front Microbiol 11:2022. https://doi.org/10.3389/fmicb.2020.02022

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rebets Y, Schmelz S, Gromyko O et al (2018) Design, development and application of whole-cell based antibiotic-specific biosensor. Metab Eng 47:263–270. https://doi.org/10.1016/j.ymben.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  9. Bagley MC, Dale JW, Merritt EA, Xiong X (2005) Thiopeptide antibiotics. Chem Rev 105(2):685–714. https://doi.org/10.1021/cr0300441

    Article  CAS  PubMed  Google Scholar 

  10. Su TL (1948) Micrococcin, an antibacterial substance formed by a strain of Micrococcus. Br J Exp Pathol 29(5):473–481

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Qu X, He X et al (2012) ThioFinder: a webbased tool for the identification of thiopeptide gene clusters in DNA sequences. PLoS ONE 7:e45878. https://doi.org/10.1371/journal.pone.0045878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang W, Park K-H, Lee J et al (2020) A new thiopeptide antibiotic, Micrococcin P3, from a marine-derived strain of the bacterium Bacillus stratosphericus. Molecules 25(19):4383. https://doi.org/10.3390/molecules25194383

    Article  CAS  PubMed Central  Google Scholar 

  13. Iniyan AM, Sudarman E, Wink J et al (2019) Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J Antibiot 72(2):99–105. https://doi.org/10.1038/s41429-018-0115-2

    Article  CAS  Google Scholar 

  14. Shen X, Mustafa M, Chen Y et al (2019) Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development. Med Chem Res 28(8):1063–1098. https://doi.org/10.1007/s00044-019-02361-1

    Article  CAS  Google Scholar 

  15. Ranieri M, Chan D, Yaeger LN et al (2019) Thiostrepton hijacks pyoverdine receptors to inhibit growth of Pseudomonas aeruginosa. Antimicrob Agents Chemother 63:e00472-e519. https://doi.org/10.1128/AAC.00472-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Degiacomi G, Personne Y, Mondesert G et al (2016) Micrococcin P1—a bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis (Edinb) 100:95–101. https://doi.org/10.1016/j.tube.2016.07.011

    Article  CAS  Google Scholar 

  17. Béahdy J (1974) Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol 18:309–406

    Article  Google Scholar 

  18. Hughes RA, Moody CJ (2007) From amino acids to heteroaromatics—thiopeptide antibiotics, nature’s heterocyclic peptides. Angew Chem Int Ed Engl 46(42):7930–7954. https://doi.org/10.1002/anie.200700728

    Article  CAS  PubMed  Google Scholar 

  19. Raju R, Gromyko O, Fedorenko V et al (2012) Juniperolide A: a new polyketide isolated from a terrestrial actinomycete Streptomyces sp. Org Lett 14(23):5860–5863. https://doi.org/10.1021/ol302766z

    Article  CAS  PubMed  Google Scholar 

  20. Raju R, Gromyko O, Fedorenko V et al (2012) Leopolic acid A, isolated from a terrestrial actinomycete, Streptomyces sp. Tetrahedron Lett 53:6300–6301. https://doi.org/10.1016/j.tetlet.2012.09.046

    Article  CAS  Google Scholar 

  21. Tistechok SI, Tymchuk IV, Korniychuk OP et al (2021) Genetic identification and antimicrobial activity of Streptomyces sp. strain Je 1–6 isolated from Rhizosphere soil of Juniperus excelsa Bieb. Cytol Genet 55:28–35. https://doi.org/10.3103/S0095452721010138

    Article  Google Scholar 

  22. Tistechok SI, Syrvatka VJ, Fedorenko VO, Gromyko OM (2018) Actinomycetes of Juniperus excelsa Bield. Rhizosphere: antagonists of phytopathogenic microbiota. Faktori eksperimental’noi evolucii organizmiv 23:340–345 ((in Ukrainian))

    Article  Google Scholar 

  23. Myronovskyy M, Ostash B, Ostash I, Fedorenko V (2009) A gene cloning system for the siomycin producer Streptomyces sioyaensis NRRL-B5408. Folia Microbiol 54(2):91–96. https://doi.org/10.1007/s12223-009-0013-x

    Article  CAS  Google Scholar 

  24. Buckingham J (1993) Dictionary of natural products. CRC Press, London

    Google Scholar 

  25. Running W (1993) Computer software reviews. Chapman and hall dictionary of natural products on CD-ROM. J Chem Inf Model 33:934–935. https://doi.org/10.1021/ci00016a603

    Article  Google Scholar 

  26. Kieser B, Buttner M, Charter K, Hopwood B (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

  27. Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159. https://doi.org/10.1099/ijs.0.65224-0

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  30. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  32. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  33. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blin K, Shaw S, Steinke K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:81–87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  Google Scholar 

  37. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vinogradov AA, Suga H (2020) Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem Biol 27(8):1032–1051. https://doi.org/10.1016/j.chembiol.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  39. Chan D, Burrows LL (2021) Thiopeptides: antibiotics with unique chemical structures and diverse biological activities. J Antibiot 74(3):161–175. https://doi.org/10.1038/s41429-020-00387-x

    Article  CAS  Google Scholar 

  40. Hrubsky YP, Aravitska OV, Myronovskyy ML et al (2009) N-methyl-N´-nitro-N-nitrosoguanidine and N-methyl-N-nitrosomethylurea influence on antibiotic activity of Streptomyces sioyaensis LV81. Microbiol Biotechnol 2(6):28–35

    Google Scholar 

  41. De Simeis D, Serra S (2021) Actinomycetes: a never-ending source of bioactive compounds-an overview on antibiotics production. Antibiotics (Basel) 10(5):483. https://doi.org/10.3390/antibiotics10050483

    Article  CAS  Google Scholar 

  42. Lau RCM, Rinehart KL (1994) Berninamycins B, C, and D, minor metabolites from Streptomyces bernensis. J Antibiot 47(12):1466–1472. https://doi.org/10.7164/antibiotics.47.1466

    Article  CAS  Google Scholar 

  43. Chiu ML, Folcher M, Katoh T et al (1999) Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J Biol Chem 274(29):20578–20586. https://doi.org/10.1074/jbc.274.29.20578

    Article  CAS  PubMed  Google Scholar 

  44. Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 35(1):7–18. https://doi.org/10.1016/j.syapm.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  45. Matter AM, Hoot SB, Anderson PD et al (2009) Valinomycin biosynthetic gene cluster in Streptomyces: conservation. Ecol Evol PLoS ONE 4(9):e7194. https://doi.org/10.1371/journal.pone.0007194

    Article  CAS  Google Scholar 

  46. Malcolmson SJ, Young TS, Ruby JG et al (2013) The posttranslational modification cascade to the thiopeptide berninamycin generates linear forms and altered macrocyclic scaffolds. Proc Natl Acad Sci US 110(21):8483–8488. https://doi.org/10.1073/pnas.1307111110

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant N/309-2003 from the Ministry of Education and Science of Ukraine to VF, and personal Grant 91657043 from the German Academic Exchange Service (DAAD) to ST. In addition, we would like to thank the scientific reviewers for their detailed and careful reviewing of the manuscript.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

OG conceived and planned the experiments. ST and OG performed the screening of the thiopeptides. MM performed the metabolite extraction and identified the berninamycins. ST performed the phylogenetic and multilocus sequence analyses, the genome sequencing, and the identification of the berninamycin gene cluster. ST and OG both processed the experimental data, performed the analysis, drafted the manuscript, and designed the figures. VF and AL aided in interpreting the results and also worked on the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Oleksandr Gromyko.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tistechok, S., Myronovskyi, M., Fedorenko, V. et al. Screening of Thiopeptide-Producing Streptomycetes Isolated From the Rhizosphere Soil of Juniperus excelsa. Curr Microbiol 79, 305 (2022). https://doi.org/10.1007/s00284-022-03004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03004-2

Navigation