Skip to main content

Advertisement

Log in

Azithromycin inhibits glioblastoma angiogenesis in mice via inducing mitochondrial dysfunction and oxidative stress

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

The poor outcomes in glioblastoma (GBM) necessitate new treatments. As GBM is highly vascularized and its growth is largely dependent on angiogenesis, angiogenesis inhibitors have been hotly evaluated in clinical trials for GBM treatment for the last decade. In line with these efforts, our work reveals that azithromycin, a clinically available antibiotic, is a novel angiogenesis inhibitor. Azithromycin inhibits vessel structure formation on Matrigel of GBM-derived endothelial cell (ECs) and other types of ECs. Time course analysis shows that azithromycin interferes with the early stage of angiogenesis. Azithromycin also inhibits GBM-derived EC adhesion, growth and survival but not migration. The transgenic zebrafish Tg (fli1a: EGFP) model clearly shows that azithromycin inhibits angiogenesis in vivo. Of note, azithromycin at non-toxic dose inhibits GBM growth in mice and increases overall survival, and furthermore, this is associated with angiogenesis inhibition. Mechanism studies show that azithromycin decreases mitochondrial respiration by suppressing the activity of multiple complexes, leading to ATP reduction, oxidative stress and damage. In addition, oxidative stress induced by azithromycin is through thiol redox-mediated pathways. Our work demonstrates the anti-angiogenic activity of azithromycin via inducing mitochondrial dysfunction and oxidative stress. Our pre-clinical evidence provides a rationale for initiating clinical trials using azithromycin in combination with standard-of-care drugs for GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available from corresponding author upon request.

References

  1. Noch EK, Ramakrishna R, Magge R (2018) Challenges in the treatment of glioblastoma: multisystem mechanisms of therapeutic resistance. World Neurosurg 116:505–517. https://doi.org/10.1016/j.wneu.2018.04.022

    Article  PubMed  Google Scholar 

  2. Lah TT, Novak M, Breznik B (2020) Brain malignancies: glioblastoma and brain metastases. Semin Cancer Biol 60:262–273. https://doi.org/10.1016/j.semcancer.2019.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Camacho A, Flores-Vazquez JG, Moscardini-Martelli J, Torres-Rios JA, Olmos-Guzman A, Ortiz-Arce CS, Cid-Sanchez DR, Perez SR, Macias-Gonzalez MDS, Hernandez-Sanchez LC, Heredia-Gutierrez JC, Contreras-Palafox GA, Suarez-Campos JJE, Celis-Lopez MA, Gutierrez-Aceves GA, Moreno-Jimenez S (2022) Glioblastoma treatment: state-of-the-art and future perspectives. Int J Mol Sci 23(13):7207. https://doi.org/10.3390/ijms23137207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15–18. https://doi.org/10.1053/sonc.2002.37263

    Article  CAS  PubMed  Google Scholar 

  5. Ahir BK, Engelhard HH, Lakka SS (2020) Tumor Development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol 57(5):2461–2478. https://doi.org/10.1007/s12035-020-01892-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaka N, Hafazalla K, Samawi H, Simpkin A, Perry J, Sahgal A, Das S (2019) Progression-free but no overall survival benefit for adult patients with bevacizumab therapy for the treatment of newly diagnosed glioblastoma: a systematic review and meta-analysis. Cancers (Basel) 11(11):1723. https://doi.org/10.3390/cancers11111723

    Article  CAS  PubMed  Google Scholar 

  7. Fu M, Zhou Z, Huang X, Chen Z, Zhang L, Zhang J, Hua W, Mao Y (2023) Use of bevacizumab in recurrent glioblastoma: a scoping review and evidence map. BMC Cancer 23(1):544. https://doi.org/10.1186/s12885-023-11043-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim MM, Umemura Y, Leung D (2018) Bevacizumab and glioblastoma: past, present, and future directions. Cancer J 24(4):180–186. https://doi.org/10.1097/PPO.0000000000000326

    Article  CAS  PubMed  Google Scholar 

  9. Festuccia C, Biordi AL, Tombolini V, Hara A, Bailey D (2020) Targeted molecular therapy in glioblastoma. J Oncol 2020:5104876. https://doi.org/10.1155/2020/5104876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Firth A, Prathapan P (2020) Azithromycin: the first broad-spectrum therapeutic. Eur J Med Chem 207:112739. https://doi.org/10.1016/j.ejmech.2020.112739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Champney WS, Burdine R (1995) Macrolide antibiotics inhibit 50S ribosomal subunit assembly in Bacillus subtilis and Staphylococcus aureus. Antimicrob Agents Chemother 39(9):2141–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2015) Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget 6(7):4569–4584. https://doi.org/10.18632/oncotarget.3174

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhou X, Zhang Y, Li Y, Hao X, Liu X, Wang Y (2012) Azithromycin synergistically enhances anti-proliferative activity of vincristine in cervical and gastric cancer cells. Cancers (Basel) 4(4):1318–1332. https://doi.org/10.3390/cancers4041318

    Article  CAS  PubMed  Google Scholar 

  14. Ozkan T, Hekmatshoar Y, Karabay AZ, Koc A, AltinokGunes B, KaradagGurel A, Sunguroglu A (2021) Assessment of azithromycin as an anticancer agent for treatment of imatinib sensitive and resistant CML cells. Leuk Res 102:106523. https://doi.org/10.1016/j.leukres.2021.106523

    Article  CAS  PubMed  Google Scholar 

  15. Qiao X, Wang X, Shang Y, Li Y, Chen SZ (2018) Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond) 38(1):43. https://doi.org/10.1186/s40880-018-0309-9

    Article  PubMed  Google Scholar 

  16. Fiorillo M, Toth F, Sotgia F, Lisanti MP (2019) Doxycycline, azithromycin and vitamin C (DAV): a potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging 11(8):2202–2216. https://doi.org/10.18632/aging.101905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sherman J, Verstandig G, Rowe JW, Brumer Y (2021) Application of machine learning to large in vitro databases to identify drug-cancer cell interactions: azithromycin and KLK6 mutation status. Oncogene 40(21):3766–3770. https://doi.org/10.1038/s41388-021-01807-4

    Article  CAS  PubMed  Google Scholar 

  18. Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F (2022) Exploring the cytotoxicity and anticancer effects of doxycycline and azithromycin on human glioblastoma multiforme cells. Neurol Res 44(3):242–251. https://doi.org/10.1080/01616412.2021.1975225

    Article  CAS  PubMed  Google Scholar 

  19. Li F, Huang J, Ji D, Meng Q, Wang C, Chen S, Wang X, Zhu Z, Jiang C, Shi Y, Liu S, Li C (2017) Azithromycin effectively inhibits tumor angiogenesis by suppressing vascular endothelial growth factor receptor 2-mediated signaling pathways in lung cancer. Oncol Lett 14(1):89–96. https://doi.org/10.3892/ol.2017.6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wan B, Wu Z, Zhang X, Huang B (2021) Mefloquine as a dual inhibitor of glioblastoma angiogenesis and glioblastoma via disrupting lysosomal function. Biochem Biophys Res Commun 580:7–13. https://doi.org/10.1016/j.bbrc.2021.09.069

    Article  CAS  PubMed  Google Scholar 

  21. Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, Butowski NA (2021) Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv 3(1):vdab100. https://doi.org/10.1093/noajnl/vdab100

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bhat SM, Badiger VA, Vasishta S, Chakraborty J, Prasad S, Ghosh S, Joshi MB (2021) 3D tumor angiogenesis models: recent advances and challenges. J Cancer Res Clin Oncol 147(12):3477–3494. https://doi.org/10.1007/s00432-021-03814-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. Childs S, Chen JN, Garrity DM, Fishman MC (2002) Patterning of angiogenesis in the zebrafish embryo. Development (Cambridge, Engl) 129(4):973–982

    Article  CAS  Google Scholar 

  24. Jiang X, Baucom C, Elliott RL (2019) Mitochondrial toxicity of azithromycin results in aerobic glycolysis and dna damage of human mammary epithelia and fibroblasts. Antibiotics (Basel) 8(3):110. https://doi.org/10.3390/antibiotics8030110

    Article  CAS  PubMed  Google Scholar 

  25. Cochrane EJ, Hulit J, Lagasse FP, Lechertier T, Stevenson B, Tudor C, Trebicka D, Sparey T, Ratcliffe AJ (2021) Impact of mitochondrial targeting antibiotics on mitochondrial function and proliferation of cancer cells. ACS Med Chem Lett 12(4):579–584. https://doi.org/10.1021/acsmedchemlett.0c00632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anthony C, Mladkova-Suchy N, Adamson DC (2019) The evolving role of antiangiogenic therapies in glioblastoma multiforme: current clinical significance and future potential. Expert Opin Investig Drugs 28(9):787–797. https://doi.org/10.1080/13543784.2019.1650019

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Ye Z, Tan L, Luo J (2021) Giant hepatic hemangioma regressed significantly without surgical management: a case report and literature review. Front Med (Lausanne) 8:712324. https://doi.org/10.3389/fmed.2021.712324

    Article  PubMed  Google Scholar 

  28. Jang MO, Jang HC, Kim UJ, Ahn JH, Kang SJ, Jung SI, Shin HY, Park KH (2014) Outcome of intravenous azithromycin therapy in patients with complicated scrub typhus compared with that of doxycycline therapy using propensity-matched analysis. Antimicrob Agents Chemother 58(3):1488–1493. https://doi.org/10.1128/AAC.01996-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaruratanasirikul S, Hortiwakul R, Tantisarasart T, Phuenpathom N, Tussanasunthornwong S (1996) Distribution of azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob Agents Chemother 40(3):825–826. https://doi.org/10.1128/AAC.40.3.825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nedel WL, Rodolphi MS, Strogulski NR, Kopczynski A, Montes THM, Abruzzi J Jr, Portela LV (2022) Antibiotic therapy does not alter mitochondrial bioenergetics in lymphocytes of patients with septic shock—a prospective cohort study. Mitochondrion 66:7–12. https://doi.org/10.1016/j.mito.2022.07.001

    Article  CAS  PubMed  Google Scholar 

  31. Negari SB, Aouizerat T, Tenenbaum A, Cohen-Cymberknoh M, Shoseyov D, Kerem E, Saada A (2013) Mitochondrial OXPHOS function is unaffected by chronic azithromycin treatment. J Cyst Fibros 12(6):682–687. https://doi.org/10.1016/j.jcf.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  32. Singlas E (1995) Clinical pharmacokinetics of azithromycin. Pathol Biol (Paris) 43(6):505–511

    CAS  PubMed  Google Scholar 

  33. Toriyama K, Takano N, Kokuba H, Kazama H, Moriya S, Hiramoto M, Abe S, Miyazawa K (2021) Azithromycin enhances the cytotoxicity of DNA-damaging drugs via lysosomal membrane permeabilization in lung cancer cells. Cancer Sci 112(8):3324–3337. https://doi.org/10.1111/cas.14992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chu DJ, Yao DE, Zhuang YF, Hong Y, Zhu XC, Fang ZR, Yu J, Yu ZY (2014) Azithromycin enhances the favorable results of paclitaxel and cisplatin in patients with advanced non-small cell lung cancer. Genet Mol Res 13(2):2796–2805. https://doi.org/10.4238/2014.April.14.8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Hubei Nature Science Foundation (81602606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Xu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical statement

Studies using patients’ samples were performed in accordance with the guidelines approved by the Ethics Review Board Committee of Yangtze University. Tissues were obtained from GBM patients during surgery after signed informed consent as approved by The First People’s Hospital of Jingzhou Review Board. Animal studies were performed according to the guidelines approved by the Institutional Animal Care Committee of Yangtze University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, H. Azithromycin inhibits glioblastoma angiogenesis in mice via inducing mitochondrial dysfunction and oxidative stress. Cancer Chemother Pharmacol 92, 291–302 (2023). https://doi.org/10.1007/s00280-023-04567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04567-y

Keywords

Navigation