Skip to main content

Advertisement

Log in

Inflammation mediated angiogenesis in chronic lymphocytic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request by email to corresponding author.

References

  1. Darwiche W, Gubler B, Marolleau JP (2018) Ghamlouch H (2018) Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues from a Functional Perspective. Front Immunol 9:683. https://doi.org/10.3389/fimmu.2018.00683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strati P, Shanafelt TD (2015) Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood 126(4):454–462. https://doi.org/10.1182/blood-2015-02-585059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS (2019) Contribution of Angiogenesis to Inflammation and Cancer. Front Oncol 9:1399. https://doi.org/10.3389/fonc.2019.01399

    Article  PubMed  PubMed Central  Google Scholar 

  4. MitrovićAjtić O, Subotički T, Diklić M, Đikić D, Vukotić M, Dragojević T, Živković E, Antić D, Čokić V (2022) Regulation of S100As Expression by Inflammatory Cytokines in Chronic Lymphocytic Leukemia. Int J Mol Sci 23(13):6952. https://doi.org/10.3390/ijms23136952

    Article  CAS  Google Scholar 

  5. Han Y, Wang X, Wang B, Jiang G (2016) The progress of angiogenic factors in the development of leukemias. Intractable Rare Dis Res 5(1):6–16. https://doi.org/10.5582/irdr.2015.01048

    Article  PubMed  PubMed Central  Google Scholar 

  6. Montemagno C, Pagès G (2020) Resistance to Anti-angiogenic Therapies: A Mechanism Depending on the Time of Exposure to the Drugs. Front Cell Dev Biol 8:584. https://doi.org/10.3389/fcell.2020.00584

    Article  PubMed  PubMed Central  Google Scholar 

  7. Adams J, Carder PJ, Downey S, Forbes MA, MacLennan K, Allgar V, Kaufman S, Hallam S, Bicknell R, Walker JJ, Cairnduff F, Selby PJ, Perren TJ, Lansdown M, Banks RE (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res 60:2898–2905

    CAS  PubMed  Google Scholar 

  8. Kay NE, Bone ND, Tschumper RC, Howell KH, Geyer SM, Dewald GW, Hanson CA, Jelinek DF (2002) B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 16:911–919. https://doi.org/10.1038/sj.leu.2402467

    Article  CAS  PubMed  Google Scholar 

  9. Griggio V, Vitale C, Todaro M, Riganti C, Kopecka J, Salvetti C, Bomben R, Bo MD, Magliulo D, Rossi D, Pozzato G, Bonello L, Marchetti M, Omedè P, Kodipad AA, Laurenti L, Del Poeta G, Mauro FR, Bernardi R, Zenz T, Gattei V, Gaidano G, Foà R, Massaia M, Boccadoro M, Coscia M (2020) HIF-1α is over-expressed in leukemic cells from TP53-disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia. Haematologica 105(4):1042–1054. https://doi.org/10.3324/haematol.2019.217430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu CG, Calin GA, Croce CM, Chan DA, Giaccia AJ, Secreto C, Wellik LE, Lee YK, Mukhopadhyay D, Kay NE (2009) Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 113(22):5568–5574. https://doi.org/10.1182/blood-2008-10-185686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopes-Coelho F, Martins F, Pereira SA, Serpa J (2021) Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 22(7):3765. https://doi.org/10.3390/ijms22073765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835. https://doi.org/10.1038/nrc925

    Article  CAS  PubMed  Google Scholar 

  13. Subotički T, MitrovićAjtić O, Živković E, Diklić M, Đikić D, Tošić M, Beleslin-Čokić B, Dragojević T, Gotić M, Santibanez JF, Čokić V (2021) VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. Int J Mol Sci 22(13):6671. https://doi.org/10.3390/ijms22136671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Darwiche W, Gubler B, Marolleau JP, Ghamlouch H (2018) Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective. Front Immunol 9:683. https://doi.org/10.3389/fimmu.2018.00683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoermann G, Greiner G, Valent P (2015) Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediat Inflamm 2015:869242. https://doi.org/10.1155/2015/869242

    Article  CAS  Google Scholar 

  16. Zhu F, McCaw L, Spaner DE, Gorczynski RM (2018) Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro. Leuk Res 66:28–38. https://doi.org/10.1016/j.leukres.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Maffei R, Martinelli S, Castelli I, Santachiara R, Zucchini P, Fontana M, Fiorcari S, Bonacorsi G, Ilariucci F, Torelli G, Marasca R (2010) Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia derived Ang2 and VEGF. Leuk Res 34(3):312–321. https://doi.org/10.1016/j.leukres.2009.06.023

    Article  CAS  PubMed  Google Scholar 

  18. Frater JL, Kay NE, Goolsby CL, Crawford SE, Dewald GW, Peterson LC (2008) Dysregulated angiogenesis in B-chronic lymphocytic leukemia: morphologic, immunohistochemical, and flow cytometric evidence. Diagn Pathol 3:16. https://doi.org/10.1186/1746-1596-3-16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ribatti D, Vacca A, De Falco G, Ria R, Roncali L, Damacco F (2001) Role of hematopoietic growth factors in angiogenesis. Acta Haematol 106:157–161. https://doi.org/10.1159/000046611

    Article  CAS  PubMed  Google Scholar 

  20. Kay NE, Strati P, LaPlant BR, Leis JF, Nikcevich D, Call TG, Pettinger AM, Lesnick CE, Hanson CA, Shanafelt TD (2016) A randomized phase II trial comparing chemoimmunotherapy with or without bevacizumab in previously untreated patients with chronic lymphocytic leukemia. Oncotarget 7(48):78269–78280. https://doi.org/10.18632/oncotarget.13412

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HA, Lütge A, Hüllein J, Wagner L, Giacopelli B, Nadeu F, Delgado J, Campo E, Mangolini M, Ringshausen I, Böttcher M, Mougiakakos D, Jacobs A, Bodenmiller B, Dietrich S, Oakes CC, Zenz T, Huber W (2021) Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. Nat Cancer 2(8):853–864. https://doi.org/10.1038/s43018-021-00216-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zent CS, LaPlant BR, Johnston PB, Call TG, Habermann TM, Micallef IN, Witzig TE (2010) The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 116:2201–2207. https://doi.org/10.1002/cncr.25005

    Article  PubMed  Google Scholar 

  23. Blunt MD, Carter MJ, Larrayoz M, Smith LD, Aguilar-Hernandez M, Cox KL, Tipton T, Reynolds M, Murphy S, Lemm E, Dias S, Duncombe A, Strefford JC, Johnson PW, Forconi F, Stevenson FK, Packham G, Cragg MS, Steele AJ (2015) The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Eμ-TCL1 mouse model. Blood 25:4032–4041. https://doi.org/10.1182/blood-2014-11-610329

    Article  CAS  Google Scholar 

  24. Chen Y, Chen L, Yu J, Ghia EM, Choi MY, Zhang L, Zhang S, Sanchez-Lopez E, Widhopf GF 2nd, Messer K, Rassenti LZ, Jamieson C, Kipps TJ (2019) Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia. Blood 134(13):1084–1094. https://doi.org/10.1182/blood.2019001366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farahani M, Treweeke AT, Toh CH, Till KJ, Harris RJ, Cawley JC, Zuzel M, Chen H (2005) Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia 19(4):524–530. https://doi.org/10.1038/sj.leu.2403631

    Article  CAS  PubMed  Google Scholar 

  26. Okumura N, Yoshida H, Kitagishi Y, Murakami M, Nishimura Y, Matsuda S (2012) PI3K/AKT/PTEN Signaling as a Molecular Target in Leukemia Angiogenesis. Adv Hematol 843085. https://doi.org/10.1155/2012/843085

  27. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280(2):145–153. https://doi.org/10.1016/j.canlet.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Michaud M, Canosa S, Kuo A, Madri JA (2011) GSK-3β: a signaling pathway node modulating neural stem cell and endothelial cell interactions. Angiogenesis 14(2):173–185. https://doi.org/10.1007/s10456-011-9201-9

    Article  CAS  PubMed  Google Scholar 

  29. Khodashenas M, Rajabian A, Attaranzadeh A, Lavi Arab F, Allahyari N (1992) Allahyari A (2022) Evaluation of cytokine levels as possible predicting elements in patients with chronic lymphocytic leukemia. Rev Assoc Med Bras 68(10):1364–1368. https://doi.org/10.1590/1806-9282.20220260

    Article  Google Scholar 

  30. Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, Tchertanov L, Moriggl R, Valent P, Arock M (2014) Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica 99(3):417–429. https://doi.org/10.3324/haematol.2013.098442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matvieieva AS, Kovalevska LM, Ivanivska TS, Klein E, Kashuba EV (2019) The STAT5 transcription factor in B-cells of patients with chronic lymphocytic leukemia. Biopolym Cell 30–38. https://doi.org/10.7124/bc.000993

  32. Witkowska M, Majchrzak A, Cebula-Obrzut B, Wawrzyniak E, Robak T, Smolewski P (2017) The distribution and potential prognostic value of SMAD protein expression in chronic lymphocytic leukemia. Tumour Biol 39(3):1010428317694551. https://doi.org/10.1177/1010428317694551

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by The Ministry of Science, Technological Development and Innovation of the Republic of Serbia grant number 451–03-66/2024–03/200015.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, V.Č., D.A. and O.M.A.; methodology, T.S., O.M.A., M.D. and D.Đ.; formal analysis, T.S., O.M.A., E.Ž. and M.D.; investigation, T.S., O.M.A., M.V., T.D. and D.Đ.; data curation, O.M.A. and M.V., writing—original draft preparation, O.M.A., T.S., V.V., and V.Č.; writing—review & editing, O.M.A. and V.Č.; visualization, O.M.A. and E.Ž.; supervision, V.Č.; project administration, V.Č. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Olivera Mitrović-Ajtić.

Ethics declarations

Institutional review board Statement

The study was approved by the Ethics Committee of the University Clinical Centre of Serbia, Belgrade (decision number 187/4) and the Ethics Committee of the Institute for Medical Research, Belgrade (decision number EO 117/2016).

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrović-Ajtić, O., Živković, E., Subotički, T. et al. Inflammation mediated angiogenesis in chronic lymphocytic leukemia. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05781-1

Keywords

Navigation