Skip to main content

Advertisement

Log in

Preoperative Role of RAS or BRAF K601E in the Guidance of Surgery for Indeterminate Thyroid Nodules

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

RAS and K601E BRAF mutations are not a reliable indicator of malignancy in fine-needle aspirations (FNA) of thyroid indeterminate cytologic nodules. We aimed to evaluate the histologic characteristics, the risk of malignancy associated with such mutations in FNA and their potential interest for preoperative clinical management of nodules.

Methods

We evaluated 69 indeterminate thyroid nodules with RAS or K601E BRAF mutations with available histopathologic follow-up. All FNA specimens were indeterminate according to the thyroid Bethesda system. Diagnosis of malignant, benign or indolent neoplasms was classified according to 2017 WHO classification. Carcinoma, NIFTP (noninvasive follicular thyroid neoplasm with papillary-like features) and WDTUMP (well-differentiated tumor of uncertain malignant potential) were considered “surgical,” as they require surgical excision. Adenoma was considered “non-surgical.” The risk of malignancy and the risk of “surgical disease” were evaluated.

Results

Pathologic evaluation of the 69 mutated nodules demonstrated benign, indolent and malignant histology in 17 cases (25%), 21 cases (30%) and 31 cases (45%), respectively. The risk of malignancy was 45%, and the risk of surgical disease was 75%. The majority of carcinomas were a follicular variant of papillary thyroid carcinoma. On follow-up, there have been no recurrences to date.

Conclusion

Preoperative RAS or BRAF K601E mutations detection in cytologic indeterminate thyroid nodules carries a high risk of surgical disease and may benefit from surgical management. Most surgical lesions harboring those mutations are low-risk tumors, which may be in favor of an initial lobectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (2017) WHO Classification of Tumours of Endocrine Organs. IARC WHO Classification of Tumours. vol. 10. Lloyd RV

  2. McLeod DSA, Sawka AM, Cooper DS (2013) Controversies in primary treatment of low-risk papillary thyroid cancer. The Lancet. 381:1046–1057

    Google Scholar 

  3. Agretti P, Niccolai F, Rago T, De Marco G, Molinaro A, Scutari M et al (2014) BRAF mutation analysis in thyroid nodules with indeterminate cytology: our experience on surgical management of patients with thyroid nodules from an area of borderline iodine deficiency. J Endocrinol Invest 37(10):1009–1014

    CAS  PubMed  Google Scholar 

  4. Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295(18):2164–2167

    CAS  PubMed  Google Scholar 

  5. Wémeau JL, Sadoul JL, d’Herbomez M, Monpeyssen H, Tramalloni J, Leteurtre E et al (2011) Recommandations de la Société française d’endocrinologie pour la prise en charge des nodules thyroïdiens. Presse Médicale 40(9):793–826

    Google Scholar 

  6. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW (2012) The bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol 56(4):333–339

    PubMed  Google Scholar 

  7. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133

    PubMed  PubMed Central  Google Scholar 

  8. Alexander EK (2008) Approach to the patient with a cytologically indeterminate thyroid nodule. J Clin Endocrinol Metab 93(11):4175–4182

    CAS  PubMed  Google Scholar 

  9. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214

    PubMed  Google Scholar 

  10. Ohori NP, Schoedel KE (2011) Variability in the atypia of undetermined significance/follicular lesion of undetermined significance diagnosis in the bethesda system for reporting thyroid cytopathology: sources and recommendations. Acta Cytol 55(6):492–498

    PubMed  Google Scholar 

  11. Cibas ES, Ali SZ (2017) The 2017 bethesda system for reporting thyroid cytopathology: definitions, criteria, and explanatory notes, 2nd edn. Springer, New York

    Google Scholar 

  12. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J et al (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367(8):705–715

    CAS  PubMed  Google Scholar 

  13. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL et al (2014) Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay: ThyroSeq NGS Test for Thyroid FNAs. Cancer 120(23):3627–3634

    CAS  PubMed  Google Scholar 

  14. Nikiforov YE, Baloch ZW. Clinical validation of the ThyroSeq v3 genomic classifier in thyroid nodules with indeterminate FNA cytology: Validation of ThyroSeq v3. Cancer Cytopathol [Internet]. 27 févr 2019 [cité 8 mars 2019]; Disponible sur: http://doi.wiley.com/10.1002/cncy.22112

  15. Lasolle H, Riche B, Decaussin-Petrucci M, Dantony E, Lapras V, Cornu C et al (2017) Predicting thyroid nodule malignancy at several prevalence values with a combined Bethesda-molecular test. Transl Res 188(58–66):e1

    Google Scholar 

  16. Decaussin-Petrucci M, Descotes F, Depaepe L, Lapras V, Denier M-L, Borson-Chazot F et al (2017) Molecular testing of BRAF, RAS and TERT on thyroid FNAs with indeterminate cytology improves diagnostic accuracy. Cytopathology 28(6):482–487

    CAS  PubMed  Google Scholar 

  17. Torregrossa L, Viola D, Sensi E, Giordano M, Piaggi P, Romei C et al (2016) Papillary thyroid carcinoma with rare Exon 15 BRAF mutation has indolent behavior: a single-institution experience. J Clin Endocrinol Metab 101(11):4413–4420

    CAS  PubMed  Google Scholar 

  18. Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R, Nikiforov YE et al (2016) Histopathologic and clinical characterization of thyroid tumors carrying the BRAFK601E mutation. Thyroid 26(2):242–247

    CAS  PubMed  Google Scholar 

  19. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL et al (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690

    PubMed Central  Google Scholar 

  20. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LDR et al (2016) Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol 2(8):1023

    PubMed  PubMed Central  Google Scholar 

  21. Suarez H, Du Villard J, Caillou B, Schlumberger M, Tubiana M, Parmentier C et al (1988) Detection of activated ras oncogenes in human thyroid carcinomas. Oncogene 2(4):403–406

    CAS  PubMed  Google Scholar 

  22. Ibrahim AA, Wu HH (2016) Fine-needle aspiration cytology of noninvasive follicular variant of papillary thyroid carcinoma is cytomorphologically distinct from the invasive counterpart. Am J Clin Pathol 146(3):373–377

    PubMed  Google Scholar 

  23. Amendoeira I, Maia T, Sobrinho-Simões M (2018) Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): impact on the reclassification of thyroid nodules. Endocr Relat Cancer 25(4):R247–R258

    CAS  PubMed  Google Scholar 

  24. Nikiforov YE (2011) Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med 135(5):569–577

    CAS  PubMed  Google Scholar 

  25. Ali SZ, Cibas ES, éditeurs. The Bethesda System for Reporting Thyroid Cytopathology [Internet]. Cham: Springer International Publishing; 2018 [cité 16 févr 2019]. Disponible: http://link.springer.com/10.1007/978-3-319-60570-8

  26. Haugen BR, Sawka AM, Alexander EK, Bible KC, Caturegli P, Doherty GM et al (2017) American thyroid association guidelines on the management of thyroid nodules and differentiated thyroid cancer task force review and recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid 27(4):481–483

    CAS  PubMed  Google Scholar 

  27. Baloch ZW, Harrell RM, Brett EM, Randolph G, Garber JR, On behalf of AACE Endocrine Surgery Scientific Committee and Thyroid Scientific Committee (2017) American Association of Clinical Endocrinologists and American College of Endocrinology Disease state commentary: managing thyroid tumors diagnosed as noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Endocr Pract 23(9):1153–1158

    Google Scholar 

  28. Strickland KC, Howitt BE, Marqusee E, Alexander EK, Cibas ES, Krane JF et al (2015) The impact of noninvasive follicular variant of papillary thyroid carcinoma on rates of malignancy for fine-needle aspiration diagnostic categories. Thyroid 25(9):987–992

    PubMed  Google Scholar 

  29. Faquin WC, Wong LQ, Afrogheh AH, Ali SZ, Bishop JA, Bongiovanni M et al (2016) Impact of reclassifying noninvasive follicular variant of papillary thyroid carcinoma on the risk of malignancy in the bethesda system for reporting thyroid cytopathology: reclassifying NI-FVPTC. Cancer Cytopathol 124(3):181–187

    PubMed  Google Scholar 

  30. Hung YP, Barletta JA (2018) A user’s guide to non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Histopathology 72(1):53–69

    PubMed  Google Scholar 

  31. Johnson DN, Sadow PM (2018) Exploration of BRAFV600E as a diagnostic adjuvant in the non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Hum Pathol 82:32–38

    CAS  PubMed  Google Scholar 

  32. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C (2003) Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 88(6):2745–2752

    CAS  PubMed  Google Scholar 

  33. Pennelli G, Vianello F, Barollo S, Pezzani R, Merante Boschin I, Pelizzo MR et al (2011) BRAFK601E mutation in a patient with a follicular thyroid carcinoma. Thyroid 21(12):1393–1396

    CAS  PubMed  Google Scholar 

  34. Lima J, Trovisco V, Soares P, Máximo V, Magalhães J, Salvatore G et al (2004) BRAF mutations are not a major event in post-chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab 89(9):4267–4271

    CAS  PubMed  Google Scholar 

  35. Trovisco V, Soares P, Preto A, de Castro IV, Lima J, Castro P et al (2005) Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch 446(6):589–595

    CAS  PubMed  Google Scholar 

  36. Patel SG, Carty SE, McCoy KL, Ohori NP, LeBeau SO, Seethala RR et al (2017) Preoperative detection of RAS mutation may guide extent of thyroidectomy. Surgery 161(1):168–175

    PubMed  Google Scholar 

  37. Carcangiu ML, Zampi G, Pupi A, Castagnoli A, Rosai J (1985) Papillary carcinoma of the thyroid a clinicopathologic study of 247 cases treated at the university of florence, Italy. Cancer 55:805–828

    CAS  PubMed  Google Scholar 

  38. Faquin WC, Baloch ZW (2010) Fine-needle aspiration of follicular patterned lesions of the thyroid: diagnosis, management, and follow-up according to National Cancer Institute (NCI) recommendations. Diagn Cytopathol 38:731–739

    PubMed  Google Scholar 

  39. Gupta N, Dasyam AK, Carty SE, Nikiforova MN, Ohori NP, Armstrong M et al (2013) RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab 98(5):E914–E922

    PubMed  PubMed Central  Google Scholar 

  40. Lemoine N, Mayall E, Wyllie F, Williams E, Goyns M, Stringer B et al (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4(2):159–164

    CAS  PubMed  Google Scholar 

  41. Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R (2000) Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract 196:1–7

    CAS  PubMed  Google Scholar 

  42. Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E et al (2000) N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone métastases and inverse correlation to thyroglobulin expression. Thyroid 10(1):19–23

    CAS  PubMed  Google Scholar 

  43. Nikiforov YE, Yip L, Nikiforova MN (2013) New strategies in diagnosing cancer in thyroid nodules: impact of molecular markers. Clin Cancer Res 19(9):2283–2288

    CAS  PubMed  Google Scholar 

  44. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL et al (2011) Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96(11):3390–3397

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Burns JS, Blaydes JP, Wright PA, Lemoine L, Bond JA (1992) Stepwise transformation of primary thyroid epitheliai cells by a mutant Ha-ras oncogene: an in vitro model of tumor progression. Mol Carcinog 6:129–139

    CAS  PubMed  Google Scholar 

  46. Weiss A, Parina RP, Tang JA, Brumund KT, Chang DC, Bouvet M (2015) Outcomes of thyroidectomy from a large California state database. Am J Surg 210(6):1170–1177

    PubMed  Google Scholar 

  47. Colonna M, Uhry Z, Guizard AV, Delafosse P, Schvartz C, Belot A et al (2015) Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol 39(4):511–518

    CAS  PubMed  Google Scholar 

  48. Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP (2016) Systematic review of trends in the incidence rates of thyroid cancer. Thyroid 26(11):1541–1552

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Garance Tondeur and Aurélie Gaultier for their excellent technical support.

Funding

No specific funding was disclosed.

Author information

Authors and Affiliations

Authors

Contributions

MDP and LR contributed to study design, results analysis, manuscript draft, cytology and histology data; FD and JL contributed to molecular biology data; VL, MLD and JCL contributed to LB-FNA and surgical specimens; JG helped in statistical analysis; and MDP, JL and FBC helped in manuscript reviewing.

Corresponding author

Correspondence to M. Decaussin-Petrucci.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravella, L., Lopez, J., Descotes, F. et al. Preoperative Role of RAS or BRAF K601E in the Guidance of Surgery for Indeterminate Thyroid Nodules. World J Surg 44, 2264–2271 (2020). https://doi.org/10.1007/s00268-020-05487-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-020-05487-1

Navigation