Skip to main content

Advertisement

Log in

CAR γδ T cells for cancer immunotherapy. Is the field more yellow than green?

  • Review Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Engineered immune cell therapy to treat malignancies refractory to conventional therapies is modernizing oncology. Although αβ T cells are time-tested chassis for CAR, potential graft versus host disease (GvHD) apart from cytokine toxicity and antigen escape pose limitations to this approach. αβ T cell malignancy challenges isolation and expansion of therapeutic T cells. Moreover, αβ T cells may pose toxicity risk to inflammation sensitive vital tissues bearing the tumor. The HLA independent, multivalent, versatile and systemic anti-tumor immunity increases the desirability of γδ T cells as an alternate chassis for CAR. Indeed, CD19 γδ CAR T cell therapy to treat advanced lymphoma reached a milestone with the fast track status by FDA. However, reduced tumor-toxicity, homing, in vivo persistence and heterogeneity limits the translation of this therapy. The field is gaining momentum in recent years with optimization of gene delivery approaches and mechanistic insights into co-signaling requirements in γδ T cells. There is a renewed interest in customizing design of CAR guided by the biology of the host immune cells. Progress has been made in the current good manufacturing practice compatible expansion and engineering protocols for the δ1 and δ2 T cells. γδ CAR T cells may find its niche in the clinical situations wherein conventional CAR therapy is less suitable due to propensity for cytokine toxicity or off-tumor effect. As the therapy is moving towards clinical trials, this review chronicles the hitherto progress in the therapeutic engineering of γδ T cells for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Available.

Code availability

Not applicable.

Abbreviations

aAPC:

Antigen presenting cells

ADCC:

Antibody dependant cellular toxicity

CCR:

Chimeric Co-Stimulatory Receptors

CNS:

Central nervous system

CRISPR/cas9:

Clustered regularly interspaced short palindromic repeats

DAP10:

DNAX—activating Protein 10 Endoplasmic reticulum kinase

FDA:

Food and drug administration

GD2:

Disialoganglioside

GMP:

Good Manufacturing Practice

GvHD:

Graft versus host disease

HLA:

Human leucocyte antigen

IFNγ:

Interferon gamma

IL-2:

Interleukin -2

iPSC:

Induced pluripotent stem cell

LAN1:

A human neuroblastoma cell line

MART-1:

Melanoma—associated antigen recognized by T cells

MCSP:

Maternal and child survival program

MHC:

Major histocompatibility complex

MICA/B:

MHC class I chain-related protein A and B

mRNA:

Messenger RNA

NK:

Natural killer cells

NKG2D:

Natural killer cell receptor

NKG2DL:

Natural killer group 2D receptor and ligands

NSCAR:

Non signalling chimeric antigen receptor

NSG:

NOD-SCID IL2Rγcnull mice

pERK:

Type I transmembrane ER-resident protein kinase /protein kinase RNA-like

RORC:

Register of registrable controllers

scFv:

Single-chain variable fragment

TCR:

T-cell receptor

ZA:

Zoledronic acid

References

  1. Papotto PH, Reinhardt A, Prinz I, Silva-Santos B (2018) Innately versatile: γδ17 T cells in inflammatory and autoimmune diseases. J Autoimmun 87:26–37. https://doi.org/10.1016/J.JAUT.2017.11.006

    Article  CAS  Google Scholar 

  2. Hudspeth K, Silva-Santos B, Mavilio D (2013) Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol. https://doi.org/10.3389/FIMMU.2013.00069

    Article  Google Scholar 

  3. Correia DV, Lopes A, Silva-Santos B (2013) Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology. https://doi.org/10.4161/ONCI.22892

    Article  Google Scholar 

  4. Yoshikawa T, Takahara M, Tomiyama M, Nieda M, Maekawa R, Nakatsura T (2014) Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy. Int J Oncol 45(5):1847–1856. https://doi.org/10.3892/IJO.2014.2634

    Article  CAS  Google Scholar 

  5. Hoeres T, Smetak M, Pretscher D, Wilhelm M (2018) Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer. Front Immunol. https://doi.org/10.3389/FIMMU.2018.00800

    Article  Google Scholar 

  6. Almeida AR et al (2016) Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. Clin Cancer Res 22(23):5795–5804. https://doi.org/10.1158/1078-0432.CCR-16-0597

    Article  CAS  Google Scholar 

  7. Du Y et al (2022) Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. https://doi.org/10.1038/S41467-021-27936-8

    Article  Google Scholar 

  8. Carpen L et al (2022) A single-cell transcriptomic landscape of innate and adaptive intratumoral immunity in triple negative breast cancer during chemo- and immunotherapies. Cell Death Discov. https://doi.org/10.1038/S41420-022-00893-X

    Article  Google Scholar 

  9. Giri S, Lal G (2021) Differentiation and functional plasticity of gamma-delta (γδ) T cells under homeostatic and disease conditions. Mol Immunol 136:138–149. https://doi.org/10.1016/J.MOLIMM.2021.06.006

    Article  CAS  Google Scholar 

  10. Schönefeldt S et al (2021) The diverse roles of γδ T cells in cancer: from rapid immunity to aggressive lymphoma. Cancers (Basel). https://doi.org/10.3390/CANCERS13246212

    Article  Google Scholar 

  11. Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J (2020) Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 19(3):169–184. https://doi.org/10.1038/S41573-019-0038-Z

    Article  CAS  Google Scholar 

  12. lo presti E, Corsale AM, Dieli F, Meraviglia S (2019) γδ cell-based immunotherapy for cancer. Expert Opin Biol Ther 19(9):887–895. https://doi.org/10.1080/14712598.2019.1634050

    Article  CAS  Google Scholar 

  13. Imbert C, Olive D (2020) γδ T Cells in tumor microenvironment. Adv Exp Med Biol 1273:91–104. https://doi.org/10.1007/978-3-030-49270-0_5

    Article  CAS  Google Scholar 

  14. Brandes M et al (2009) Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 106(7):2307–2312. https://doi.org/10.1073/PNAS.0810059106

    Article  CAS  Google Scholar 

  15. Lamb LS, Pillai S, Langford S, Bowersock J, di Stasi A, Saad A (2018) Clinical-scale manufacturing of γδ T cells for protection against infection and disease recurrence following haploidentical peripheral blood stem cell transplantation and cyclophosphamide gvhd prophylaxis. Bone Marrow Transplant 53(6):766–769. https://doi.org/10.1038/S41409-018-0130-8

    Article  CAS  Google Scholar 

  16. Xu Y et al (2021) Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol 18(2):427–439. https://doi.org/10.1038/S41423-020-0515-7

    Article  CAS  Google Scholar 

  17. Long HM, Meckiff BJ, Taylor GS (2019) The T-cell response to Epstein-Barr virus-new tricks from an old dog. Front Immunol. https://doi.org/10.3389/FIMMU.2019.02193

    Article  Google Scholar 

  18. Roselli E, Faramand R, Davila ML (2021) Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. J Clin Invest. https://doi.org/10.1172/JCI142030

    Article  Google Scholar 

  19. Gudiol C, Lewis RE, Strati P, Kontoyiannis DP (2021) Chimeric antigen receptor T-cell therapy for the treatment of lymphoid malignancies: is there an excess risk for infection? Lancet Haematol 8(3):e216–e228. https://doi.org/10.1016/S2352-3026(20)30376-8

    Article  Google Scholar 

  20. Han D, Xu Z, Zhuang Y, Ye Z, Qian Q (2021) Current progress in CAR-T cell therapy for hematological malignancies. J Cancer 12(2):326–334. https://doi.org/10.7150/JCA.48976

    Article  CAS  Google Scholar 

  21. Gotti M et al (2020) Cancer immunotherapy using chimeric antigen receptor expressing t-cells: present and future needs of clinical cancer centers. Front Immunol. https://doi.org/10.3389/FIMMU.2020.565236

    Article  Google Scholar 

  22. Rozenbaum M et al (2020) Gamma-delta CAR-T cells show CAR-directed and independent activity against leukemia. Front Immunol. https://doi.org/10.3389/FIMMU.2020.01347

    Article  Google Scholar 

  23. Fleischer LC, Becker SA, Ryan RE, Fedanov A, Doering CB, Spencer HT (2020) Non-signaling chimeric antigen receptors enhance antigen-directed killing by γδ T cells in contrast to αβ T cells. Mol Ther Oncolytics 18:149–160. https://doi.org/10.1016/J.OMTO.2020.06.003

    Article  CAS  Google Scholar 

  24. Rischer M, Pscherer S, Duwe S, Vormoor J, Jürgens H, Rossig C (2004) Human gammadelta T cells as mediators of chimaeric-receptor redirected anti-tumour immunity. Br J Haematol 126(4):583–592. https://doi.org/10.1111/J.1365-2141.2004.05077.X

    Article  CAS  Google Scholar 

  25. Deniger DC et al (2013) Bispecific T-cells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol Ther 21(3):638–647. https://doi.org/10.1038/MT.2012.267

    Article  CAS  Google Scholar 

  26. Harrer DC et al (2017) RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma. BMC Cancer. https://doi.org/10.1186/S12885-017-3539-3

    Article  Google Scholar 

  27. Li L et al (2020) Chimeric antigen receptor T-cell therapy in glioblastoma: current and future. Front Immunol. https://doi.org/10.3389/FIMMU.2020.594271

    Article  Google Scholar 

  28. Obajdin J, Davies DM, Maher J (2020) Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 202(1):11–27. https://doi.org/10.1111/CEI.13478

    Article  CAS  Google Scholar 

  29. Fisher J et al (2017) Avoidance of on-target off-tumor activation using a co-stimulation-only chimeric antigen receptor. Mol Ther 25(5):1234–1247. https://doi.org/10.1016/J.YMTHE.2017.03.002

    Article  CAS  Google Scholar 

  30. Fisher J et al (2019) Engineering γδT cells limits tonic signaling associated with chimeric antigen receptors. Sci Signal. https://doi.org/10.1126/SCISIGNAL.AAX1872

    Article  Google Scholar 

  31. Yazdanifar M, Barbarito G, Bertaina A, Airoldi I (2020) γδ T Cells: the ideal tool for cancer immunotherapy. Cells. https://doi.org/10.3390/CELLS9051305

    Article  Google Scholar 

  32. Driouk L et al (2020) Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-Cell acute lymphoblastic leukemia. Front Immunol. https://doi.org/10.3389/FIMMU.2020.580328

    Article  Google Scholar 

  33. Zhang X et al (2022) A CD123-specific chimeric antigen receptor augments anti-acute myeloid leukemia activity of Vγ9Vδ2 T cells. Immunotherapy 14(5):321–336. https://doi.org/10.2217/IMT-2021-0143

    Article  CAS  Google Scholar 

  34. Capsomidis A et al (2018) Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol Ther 26(2):354–365. https://doi.org/10.1016/J.YMTHE.2017.12.001

    Article  CAS  Google Scholar 

  35. Pamplona A, Silva-Santos B (2021) γδ T cells in malaria: a double-edged sword. FEBS J 288(4):1118–1129. https://doi.org/10.1111/FEBS.15494

    Article  CAS  Google Scholar 

  36. Du SH et al (2016) Co-expansion of cytokine-induced killer cells and Vγ9Vδ2 T Cells for CAR T-Cell therapy”. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0161820

    Article  Google Scholar 

  37. Ang WX et al (2020) Electroporation of NKG2D RNA CAR improves Vγ9Vδ2 T cell responses against human solid tumor xenografts. Mol Ther Oncolytics 17:421–430. https://doi.org/10.1016/J.OMTO.2020.04.013

    Article  CAS  Google Scholar 

  38. Ng YY, Tay JCK, Li Z, Wang J, Zhu J, Wang S (2021) T cells expressing nkg2d car with a DAP12 signaling domain stimulate lower cytokine production while effective in tumor eradication. Mol Ther 29(1):75–85. https://doi.org/10.1016/J.YMTHE.2020.08.016

    Article  CAS  Google Scholar 

  39. Sentman M-L et al (2016) Mechanisms of acute toxicity in NKG2D chimeric antigen receptor T cell-treated mice. J Immunol 197(12):4674–4685. https://doi.org/10.4049/JIMMUNOL.1600769

    Article  CAS  Google Scholar 

  40. Callahan C, Barry A, Fooks-Parker S, Smith L, Baniewicz D, Hobbie W (2019) Pediatric survivorship: considerations following CAR T-cell therapy. Clin J Oncol Nurs 23(2):35–41. https://doi.org/10.1188/19.CJON.S1.35-41

    Article  Google Scholar 

  41. Bayón-calderón F, Toribio ML, González-garcía S (2020) Facts and challenges in immunotherapy for T-cell acute lymphoblastic leukemia. Int J Mol Sci 21(20):1–36. https://doi.org/10.3390/IJMS21207685

    Article  Google Scholar 

  42. Burnham RE et al (2020) (2020) Characterization of donor variability for γδ T cell ex vivo expansion and development of an allogeneic γδ T cell immunotherapy. Frontiers in Medicine. https://doi.org/10.3389/fmed.2020.588453

    Article  Google Scholar 

  43. Paper: induced pluripotent stem cell-derived gamma delta CAR-T cells for cancer immunotherapy. https://ash.confex.com/ash/2021/webprogram/Paper149095.html (accessed Jun. 18, 2022).

  44. Ferry GM et al (2022) (2022) A simple and robust single-step method for CAR-Vδ1 γδT cell expansion and transduction for cancer immunotherapy. Front Immunol. https://doi.org/10.3389/FIMMU.2022.863155

    Article  Google Scholar 

  45. Makkouk A et al (2021) Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J Immunother Cancer. https://doi.org/10.1136/JITC-2021-003441

    Article  Google Scholar 

  46. Nishida T, Kataoka H (2019) Glypican 3-targeted therapy in hepatocellular carcinoma. Cancers (Basel). https://doi.org/10.3390/CANCERS11091339

    Article  Google Scholar 

  47. Nishimoto KP et al (2022) Allogeneic CD20-targeted γδ T cells exhibit innate and adaptive antitumor activities in preclinical B-cell lymphoma models. Clinical and Translational Immunol. https://doi.org/10.1002/cti2.1373

    Article  Google Scholar 

  48. Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S (2020) Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 17(9):925–939. https://doi.org/10.1038/S41423-020-0504-X

    Article  CAS  Google Scholar 

  49. A study of ADI-001 in B cell malignancies—full text view—clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT04735471 (accessed May 26, 2022).

  50. Xiao L et al (2018) Large-scale expansion of Vγ9Vδ2 T cells with engineered K562 feeder cells in G-Rex vessels and their use as chimeric antigen receptor-modified effector cells. Cytotherapy 20(3):420–435. https://doi.org/10.1016/J.JCYT.2017.12.014

    Article  CAS  Google Scholar 

  51. Gustafsson K, Herrmann T, Dieli F (2020) Editorial: understanding gamma delta T cell multifunctionality—towards immunotherapeutic applications. Front Immunol. https://doi.org/10.3389/fimmu.2020.00921

    Article  Google Scholar 

  52. Sutton KS, Dasgupta A, McCarty D, Doering CB, Spencer HT (2016) Bioengineering and serum free expansion of blood-derived γδ T cells”. Cytotherapy. https://doi.org/10.1016/j.jcyt.2016.04.001

    Article  Google Scholar 

  53. Kang N et al (2009) Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human. Immunol Lett 125(2):105–113. https://doi.org/10.1016/J.IMLET.2009.06.005

    Article  CAS  Google Scholar 

  54. VanSeggelen H et al (2015) T cells engineered with chimeric antigen receptors targeting NKG2D ligands display lethal toxicity in mice. Mol Ther 23(10):1600–1610. https://doi.org/10.1038/MT.2015.119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ramalingaswamy Re-entry Fellowship from the Department of Biotechnology, Government of India (BT/ RLF/Re-entry/35/2016/ dated 19/07/2018) for the funding. Dean and Office of the Director—Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram for the administrative support.

Funding

The research is supported by the Ramalingaswamy Re-entry Fellowship (RRF) to SM, Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Martin.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

This is a review article in which the authors are working based on secondary data from the referenced publications. No primary data from the authors laboratory is included.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganapathy, T., Radhakrishnan, R., Sakshi, S. et al. CAR γδ T cells for cancer immunotherapy. Is the field more yellow than green?. Cancer Immunol Immunother 72, 277–286 (2023). https://doi.org/10.1007/s00262-022-03260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03260-y

Keywords

Navigation