Skip to main content

Advertisement

Log in

Current clinical applications of Cerenkov luminescence for intraoperative molecular imaging

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Cerenkov luminescence imaging (CLI) is a new emerging technology that can be used for optical imaging of approved radiotracers, both in a preclinical, and even more recently, in a clinical context with rapid imaging times, low costs, and detection in real-time (Grootendorst et al. Clin Transl Imaging 4(5):353–66, 2016); Wang et al. Photonics 9(6):390, 2022). This brief review provides an overview of clinical applications of CLI with a focus on intraoperative margin assessment (IMA) to address shortcomings and provide insight for future work in this application.

Methods

A literature review was performed using PubMed using the search words Cerenkov luminescence imaging (CLI), intraoperative margin assessment (IMA), and image-guided surgery. Articles were selected based on title, abstract, content, and application.

Results

Original research was summarized to examine advantages and limitations of CLI compared to other modalities for IMA. The characteristics of Cerenkov luminescence (CL) are defined, and results from relevant clinical trials are discussed. Prospects of ongoing clinical trials are reviewed, along with technological advancements related to CLI.

Conclusion

CLI is a proven method for molecular imaging and shows feasibility for determining intraoperative margins if future work involves establishing quantitative approaches for attenuation and scattering, depth analysis, and radiation safety for CLI at a larger scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© 2017 Springer Nature Limited

Fig. 2

© 2013 SPIE. b (left) After radiotracer injection, the patient sits in the lightproof enclosure for up to 15 min of imaging time. The Cerenkov camera is placed outside the enclosure and connected to relay optics, fiberscope, and a f-0.95 lens. Most of the CL detected is red-weighted, since the blue-weighted wavelengths are attenuated and scattered through the patients’ tissue. (right) CL image produced using the clinical Cerenkov setup vs. a standard-of-care PET image of (top) thyroid cancer using [131I]-sodium iodide and (bottom) lymphoma using [18F]-FDG. Reproduced with permission from [30], © 2022 Springer Nature Limited

Fig. 3

© 2017 SNMMI

Fig. 4

© 2020 Springer Science + Business Media

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Grootendorst MR, et al. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging. 2016;4(5):353–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenthal EL, et al. The status of contemporary image-guided modalities in oncologic surgery. Ann Surg. 2015;261(1):46–55.

    Article  PubMed  Google Scholar 

  3. Wilson BC, Eu D. Optical spectroscopy and imaging in surgical management of cancer patients. Translational Biophotonics. 2022;4(3):e202100009.

  4. Olde Heuvel J, et al. 68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging. 2020;47(11):2624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chi C, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4(11):1072–84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heidkamp J, et al. Novel imaging techniques for intraoperative margin assessment in surgical oncology: a systematic review. Int J Cancer. 2021;149(3):635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schlomm T, et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol. 2012;62(2):333–40.

    Article  PubMed  Google Scholar 

  8. Darr C, et al. Intraoperative <sup>68</sup>Ga-PSMA Cerenkov luminescence imaging for surgical margins in radical prostatectomy: a feasibility study. J Nucl Med. 2020;61(10):1500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Darr C, et al. Prostate specific membrane antigen-radio guided surgery using Cerenkov luminescence imaging—utilization of a short-pass filter to reduce technical pitfalls. Transl Androl Urol. 2021;10(10):3972–85.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maurer T, et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol. 2015;68(3):530–4.

    Article  PubMed  Google Scholar 

  11. Krekel NM, et al. Intraoperative ultrasound guidance for palpable breast cancer excision (COBALT trial): a multicentre, randomised controlled trial. Lancet Oncol. 2013;14(1):48–54.

    Article  PubMed  Google Scholar 

  12. Senft C, et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12(11):997–1003.

    Article  PubMed  Google Scholar 

  13. Zúñiga WC, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy. Sci Rep. 2019;9:14639. https://doi.org/10.1038/s41598-019-51112-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Y, Fearn T, Chicken DW, et al. Elastic scattering spectroscopy for early detection of breast cancer: partially supervised Bayesian image classification of scanned sentinel lymph nodes. J Biomed Optics. 2018;23(08):085004.

  15. Balog J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):194ra93–194ra93.

  16. Stibbe JA, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial. Lancet Oncol. 2023;24(5):457–67.

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen HG, et al. First-in-human evaluation of a prostate-specific membrane antigen–targeted near-infrared fluorescent small molecule for fluorescence-based identification of prostate cancer in patients with high-risk prostate cancer undergoing robotic-assisted prostatectomy. Eur Uroly Oncol. 2023. https://doi.org/10.1016/j.euo.2023.07.004.

  18. Grimm J. Cerenkov luminescence imaging. In: Imaging and Visualization in the Modern Operating Room. Springer; 2015.

  19. Thorek D, et al. Cerenkov imaging — a new modality for molecular imaging. Am J Nucl Med Mol Imaging. 2012;2(2):163–73.

    PubMed  PubMed Central  Google Scholar 

  20. Shaffer TM, Pratt EC, Grimm J. Utilizing the power of Cerenkov light with nanotechnology. Nat Nanotechnol. 2017;12(2):106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mc Larney B, Skubal M, Grimm J. A review of recent and emerging approaches for the clinical application of Cerenkov luminescence imaging. Front Phys. 2021;9. https://doi.org/10.3389/fphy.2021.684196.

  22. Ciarrocchi E, Belcari N. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys. 2017;4(1):1–31.

  23. Das S, Thorek DLJ, Grimm J. Cerenkov Imaging. 2014, Elsevier. p. 213–234.

  24. Mc Larney BE, et al. Detection of shortwave-infrared Cerenkov luminescence from medical isotopes. J Nucl Med. 2023;64(1):177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, et al. Cherenkov luminescence in tumor diagnosis and treatment: a review. Photonics. 2022;9(6):390.

    Article  CAS  Google Scholar 

  26. Robertson R, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54(16):N355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holland JP, et al. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging. 2011;10(3):177–86, 1–3.

  28. Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, et al. First human Cerenkography. J Biomed Optics. 2013;18(2):020502.

  29. Thorek DLJ, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of<sup>18</sup>F-FDG. J Nucl Med. 2014;55(1):95–8.

    Article  CAS  PubMed  Google Scholar 

  30. Pratt EC, et al. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location. Nat Biomed Eng. 2022;6(5):559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu H, et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25(6):1814–22.

    Article  PubMed  Google Scholar 

  32. Spinelli AE, Schiariti MP, Grana CM, Ferrari M, Cremonesi M, Boschi F. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery. J Biomed Optics. 2016;21(5):050502. https://doi.org/10.1117/1.JBO.21.5.050502.

  33. Grootendorst MR, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using <sup>18</sup>F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med. 2017;58(6):891–8.

    Article  CAS  PubMed  Google Scholar 

  34. Grootendorst MR, et al. P094. Clinical feasibility of Cerenkov luminescence imaging (CLI) for intraoperative assessment of tumour excision margins and sentinel lymph node metastases in breast-conserving surgery. Eur J Surg Oncol (EJSO). 2015;41(6):S53. https://doi.org/10.1016/j.ejso.2015.03.132.

  35. Michel C, et al. P7. Intra-operative margin detection using Cerenkov luminescence imaging during radical prostatectomy — initial results from the PRIME study. Eur J Surg Oncol (EJSO). 2015;41(11):S271.

  36. Heuvel JO, et al. Cerenkov luminescence imaging in prostate cancer: not the only light that shines. J Nucl Med. 2022;63(1):29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Costa PF, et al. <sup>18</sup>F-PSMA Cerenkov luminescence and flexible autoradiography imaging in a prostate cancer mouse model and first results of a radical prostatectomy feasibility study in men. J Nucl Med. 2023;64(4):598–604.

    Article  CAS  PubMed  Google Scholar 

  38. Darr C, et al. First-in-man intraoperative Cerenkov luminescence imaging for oligometastatic prostate cancer using 68Ga-PSMA-11. Eur J Nucl Med Mol Imaging. 2020;47(13):3194–5.

    Article  PubMed  Google Scholar 

  39. Chen X, et al. Sensitivity improved Cerenkov luminescence endoscopy using optimal system parameters. Quant Imaging Med Surg. 2022;12(1):425–38.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Costa PF, et al. Radiation protection and occupational exposure on <sup>68</sup>Ga-PSMA-11–based Cerenkov luminescence imaging procedures in robot-assisted prostatectomy. J Nucl Med. 2022;63(9):1349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olde Heuvel J, et al. Performance evaluation of Cerenkov luminescence imaging: a comparison of 68Ga with 18F. EJNMMI Physics. 2019;6(17). https://doi.org/10.1186/s40658-019-0255-x.

  42. Trotter J, et al. Positron emission tomography (PET)/computed tomography (CT) imaging in radiation therapy treatment planning: a review of PET imaging tracers and methods to incorporate PET/CT. Adv Radiat Oncol. 2023;8(5): 101212.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Heo Y-A. Flotufolastat F 18: Diagnostic first approval. Mol Diagn Ther. 2023;27(5):631–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge the support of the following grant: P30 CA08748 (to S. M. Vickers MSKCC).

Author information

Authors and Affiliations

Authors

Contributions

Jan Grimm conceptualized the idea for the article and approved final manuscript. Natalie Boykoff performed the literature review, data analysis, and drafted the manuscript.

Corresponding author

Correspondence to Jan Grimm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boykoff, N., Grimm, J. Current clinical applications of Cerenkov luminescence for intraoperative molecular imaging. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06602-3

Keywords

Navigation