Skip to main content

Advertisement

Log in

EANM guideline on the role of 2-[18F]FDG PET/CT in diagnosis, staging, prognostic value, therapy assessment and restaging of ovarian cancer, endorsed by the American College of Nuclear Medicine (ACNM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI) and the International Atomic Energy Agency (IAEA)

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

In most patients with ovarian carcinoma, the diagnosis is reached when the disease is long past the initial stages, presenting already an advanced stage, and they usually have a very bad prognosis. Cytoreductive or debulking surgical procedures, platinum-based chemotherapy and targeted agents are key therapeutic elements. However, around 7 out of 10 patients present recurrent disease within 36 months from the initial diagnosis. The metastatic spread in ovarian cancer follows three pathways: contiguous dissemination across the peritoneum, dissemination through the lymphatic drainage and, although less importantly in this case, through the bloodstream. Radiological imaging, including ultrasound, CT and MRI, are the main imaging techniques in which management decisions are supported, CT being considered the best available technique for presurgical evaluation and staging purposes. Regarding 2-[18F]FDG PET/CT, the evidence available in the literature demonstrates efficacy in primary detection, disease staging and establishing the prognosis and especially for relapse detection. There is limited evidence when considering the evaluation of therapeutic response. This guideline summarizes the level of evidence and grade of recommendation for the clinical indications of 2-[18F]FDG PET/CT in each disease stage of ovarian carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-[18F]FDG:

2-[18F]Fluoro-2-deoxy-D-glucose

AOC:

Advanced ovarian cancer

BOT:

Borderline ovarian tumour

CEA:

Serum carcinoembryonic antigen

CT:

Computed tomography

ceCT:

Contrast-enhanced computed tomography

EOC:

Early-stage ovarian carcinoma

EORTC:

European Organisation for Research and Treatment of Cancer

ESMO:

European Society of Medical Oncology

ESGO:

European Society of Gynaecological Oncology

FIGO:

International Federation of Gynaecology and Obstetrics

IAEA:

International Atomic Energy Agency

IOTA:

International Ovarian Tumour Analysis group

LBM:

Lean body mass

LGSC:

Low-grade serous carcinoma

PCI:

Peritoneal cancer index

PET:

Positron emission tomography

MATV or MTV:

Metabolic active tumour volume

MRI:

Magnetic resonance imaging

sBOT(s):

Serous borderline ovarian tumour(s)

SUL:

Standardized uptake value using lean body mass (LBM)

SUV:

Standardized uptake value

TAUS:

Transabdominal ultrasound

TLG:

Total lesion glycolysis

TVUS:

Transvaginal ultrasound

US:

Ultrasound or echography

VOI:

Volume of interest

WHO:

World Health Organization

References

  1. Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer. 2017;140:2451–60. https://doi.org/10.1002/ijc.30676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. https://doi.org/10.3322/caac.21262.

    Article  Google Scholar 

  3. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–96. https://doi.org/10.3322/caac.21456.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941–53. https://doi.org/10.1002/ijc.31937.

    Article  CAS  Google Scholar 

  5. ECIS - European Cancer Information System.

  6. Wu SG, Wang J, Sun JY, He ZY, Zhang WW, Zhou J. Real-world impact of survival by period of diagnosis in epithelial ovarian cancer between 1990 and 2014. Front Oncol. 2019;9:639. https://doi.org/10.3389/fonc.2019.00639.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv259. https://doi.org/10.1093/annonc/mdy157.

    Article  CAS  PubMed  Google Scholar 

  8. Prat J. New insights into ovarian cancer pathology. Ann Oncol. 2012;23(Suppl 10):x111–7. https://doi.org/10.1093/annonc/mds300.

    Article  PubMed  Google Scholar 

  9. Prat J, D’Angelo E, Espinosa I. Ovarian carcinomas: at least five different diseases with distinct histological features and molecular genetics. Hum Pathol. 2018;80:11–27. https://doi.org/10.1016/j.humpath.2018.06.018.

    Article  CAS  PubMed  Google Scholar 

  10. Meyers MA. Distribution of intra-abdominal malignant seeding: dependency on dynamics of flow of ascitic fluid. Am J Roentgenol Radium Ther Nucl Med. 1973;119:198–206. https://doi.org/10.2214/ajr.119.1.198.

    Article  CAS  PubMed  Google Scholar 

  11. Coakley FV. Staging ovarian cancer: role of imaging. Radiol Clin North Am. 2002;40:609–36. https://doi.org/10.1016/s0033-8389(01)00012-4.

    Article  PubMed  Google Scholar 

  12. Coakley FV, Choi PH, Gougoutas CA, Pothuri B, Venkatraman E, Chi D, et al. Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology. 2002;223:495–9. https://doi.org/10.1148/radiol.2232011081.

    Article  PubMed  Google Scholar 

  13. Forstner R. Radiological staging of ovarian cancer: imaging findings and contribution of CT and MRI. Eur Radiol. 2007;17:3223–35. https://doi.org/10.1007/s00330-007-0736-5.

    Article  PubMed  Google Scholar 

  14. Mitchell CL, O’Connor JP, Jackson A, Parker GJ, Roberts C, Watson Y, et al. Identification of early predictive imaging biomarkers and their relationship to serological angiogenic markers in patients with ovarian cancer with residual disease following cytotoxic therapy. Ann Oncol. 2010;21:1982–9. https://doi.org/10.1093/annonc/mdq079.

    Article  CAS  PubMed  Google Scholar 

  15. Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2014;124:1–5. https://doi.org/10.1016/j.ijgo.2013.10.001.

    Article  PubMed  Google Scholar 

  16. Prat J. Abridged republication of FIGO’s staging classification for cancer of the ovary, fallopian tube, and peritoneum. Cancer. 2015;121:3452–4. https://doi.org/10.1002/cncr.29524.

    Article  PubMed  Google Scholar 

  17. Javadi S, Ganeshan DM, Qayyum A, Iyer RB, Bhosale P. Ovarian cancer, the revised FIGO staging system, and the role of imaging. AJR Am J Roentgenol. 2016;206:1351–60. https://doi.org/10.2214/ajr.15.15199.

    Article  PubMed  Google Scholar 

  18. Holcomb K, Vucetic Z, Miller MC, Knapp RC. Human epididymis protein 4 offers superior specificity in the differentiation of benign and malignant adnexal masses in premenopausal women. Am J Obstet Gynecol. 2011;205(358):e1-6. https://doi.org/10.1016/j.ajog.2011.05.017.

    Article  CAS  Google Scholar 

  19. Mitchell DG, Javitt MC, Glanc P, Bennett GL, Brown DL, Dubinsky T, et al. ACR appropriateness criteria staging and follow-up of ovarian cancer. J Am Coll Radiol. 2013;10:822–7. https://doi.org/10.1016/j.jacr.2013.07.017.

    Article  PubMed  Google Scholar 

  20. Bharwani N, Reznek RH, Rockall AG. Ovarian cancer management: the role of imaging and diagnostic challenges. Eur J Radiol. 2011;78:41–51. https://doi.org/10.1016/j.ejrad.2010.11.039.

    Article  PubMed  Google Scholar 

  21. Brown DL. A practical approach to the ultrasound characterization of adnexal masses. Ultrasound Q. 2007;23:87–105. https://doi.org/10.1097/01.ruq.0000263849.45926.cb.

    Article  PubMed  Google Scholar 

  22. Brown DL, Doubilet PM, Miller FH, Frates MC, Laing FC, DiSalvo DN, et al. Benign and malignant ovarian masses: selection of the most discriminating gray-scale and Doppler sonographic features. Radiology. 1998;208:103–10. https://doi.org/10.1148/radiology.208.1.9646799.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrazzi E, Zanetta G, Dordoni D, Berlanda N, Mezzopane R, Lissoni AA. Transvaginal ultrasonographic characterization of ovarian masses: comparison of five scoring systems in a multicenter study. Ultrasound Obstet Gynecol. 1997;10:192–7. https://doi.org/10.1046/j.1469-0705.1997.10030192.x.

    Article  CAS  PubMed  Google Scholar 

  24. Reles A, Wein U, Lichtenegger W. Transvaginal color Doppler sonography and conventional sonography in the preoperative assessment of adnexal masses. J Clin Ultrasound. 1997;25:217–25. https://doi.org/10.1002/(sici)1097-0096(199706)25:5%3c217::aid-jcu1%3e3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  25. Sayasneh A, Kaijser J, Preisler J, Johnson S, Stalder C, Husicka R, et al. A multicenter prospective external validation of the diagnostic performance of IOTA simple descriptors and rules to characterize ovarian masses. Gynecol Oncol. 2013;130:140–6. https://doi.org/10.1016/j.ygyno.2013.04.003.

    Article  PubMed  Google Scholar 

  26. Gu P, Pan LL, Wu SQ, Sun L, Huang G. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2009;71:164–74. https://doi.org/10.1016/j.ejrad.2008.02.019.

    Article  PubMed  Google Scholar 

  27. Grueneisen J, Schaarschmidt BM, Heubner M, Suntharalingam S, Milk I, Kinner S, et al. Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: a comparison to PET/CT. Eur J Radiol. 2015;84:2097–102. https://doi.org/10.1016/j.ejrad.2015.08.010.

    Article  PubMed  Google Scholar 

  28. Forstner R, Sala E, Kinkel K, Spencer JA. ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol. 2010;20:2773–80. https://doi.org/10.1007/s00330-010-1886-4.

    Article  PubMed  Google Scholar 

  29. Colombo N, Sessa C, Du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Int J Gynecol Cancer Soc. 2019. https://doi.org/10.1136/ijgc-2019-000308.

    Article  Google Scholar 

  30. Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann Oncol. 2019;30:672–705. https://doi.org/10.1093/annonc/mdz062.

    Article  CAS  PubMed  Google Scholar 

  31. Querleu D, Planchamp F, Chiva L, Fotopoulou C, Barton D, Cibula D, et al. European Society of Gynaecological Oncology (ESGO) Guidelines for Ovarian Cancer Surgery. Int J Gynecol Cancer Soc. 2017;27:1534–42. https://doi.org/10.1097/igc.0000000000001041.

    Article  Google Scholar 

  32. Harter P, Sehouli J, Lorusso D, Reuss A, Vergote I, Marth C, et al. A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N Engl J Med. 2019;380:822–32. https://doi.org/10.1056/NEJMoa1808424.

    Article  PubMed  Google Scholar 

  33. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505. https://doi.org/10.1056/NEJMoa1810858.

    Article  CAS  PubMed  Google Scholar 

  34. Wilson MK, Pujade-Lauraine E, Aoki D, Mirza MR, Lorusso D, Oza AM, et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: recurrent disease. Ann Oncol. 2017;28:727–32. https://doi.org/10.1093/annonc/mdw663.

    Article  CAS  PubMed  Google Scholar 

  35. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.

    Article  CAS  PubMed  Google Scholar 

  36. Im HJ, Bradshaw T, Solaiyappan M, Cho SY. Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging. 2018;52:5–15. https://doi.org/10.1007/s13139-017-0493-6.

    Article  PubMed  Google Scholar 

  37. Im HJ, Pak K, Cheon GJ, Kang KW, Kim SJ, Kim IJ, et al. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging. 2015;42:241–51. https://doi.org/10.1007/s00259-014-2903-7.

    Article  CAS  PubMed  Google Scholar 

  38. Lasnon C, Enilorac B, Popotte H, Aide N. Impact of the EARL harmonization program on automatic delineation of metabolic active tumour volumes (MATVs). EJNMMI Res. 2017;7:30. https://doi.org/10.1186/s13550-017-0279-y.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. (18)F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:2324–35. https://doi.org/10.1007/s00259-016-3441-2.

    Article  PubMed  Google Scholar 

  40. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imag Biol. 2016;18:788–95. https://doi.org/10.1007/s11307-016-0940-2.

    Article  CAS  Google Scholar 

  41. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44:17–31. https://doi.org/10.1007/s00259-017-3740-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122s-s150. https://doi.org/10.2967/jnumed.108.057307.

    Article  CAS  PubMed  Google Scholar 

  43. Jh O, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. 2016;280:576–84. https://doi.org/10.1148/radiol.2016142043.

    Article  Google Scholar 

  44. Pinker K, Riedl C, Weber WA. Evaluating tumor response with FDG PET: updates on PERCIST, comparison with EORTC criteria and clues to future developments. Eur J Nucl Med Mol Imaging. 2017;44:55–66. https://doi.org/10.1007/s00259-017-3687-3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chereau E, Ballester M, Selle F, Cortez A, Darai E, Rouzier R. Comparison of peritoneal carcinomatosis scoring methods in predicting resectability and prognosis in advanced ovarian cancer. Am J Obstet Gynecol. 2010;202:178.e1-.e10. https://doi.org/10.1016/j.ajog.2009.10.856.

    Article  Google Scholar 

  46. Delgado Bolton RC, Calapaqui Teran AK, Pellet O, Ferrero AM, Giammarile F. The search for new 2-[18F]FDG PET/CT imaging biomarkers in advanced ovarian cancer patients: focus on peritoneal staging for guiding precision medicine and management decisions. Clin Nucl Med. 2021. https://doi.org/10.1097/RLU.0000000000003784.

  47. Caresia Aroztegui AP, García Vicente AM, Alvarez Ruiz S, Delgado Bolton RC, Orcajo Rincon J, Garcia Garzon JR, et al. 18F-FDG PET/CT in breast cancer: evidence-based recommendations in initial staging. Tumour Biol. 2017;39:1010428317728285. https://doi.org/10.1177/1010428317728285.

    Article  CAS  PubMed  Google Scholar 

  48. Salaün PY, Abgral R, Malard O, Querellou-Lefranc S, Quere G, Wartski M, et al. Good clinical practice recommendations for the use of PET/CT in oncology. Eur J Nucl Med Mol Imaging. 2020;47:28–50. https://doi.org/10.1007/s00259-019-04553-8.

    Article  PubMed  Google Scholar 

  49. Castellucci P, Perrone AM, Picchio M, Ghi T, Farsad M, Nanni C, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28:589–95. https://doi.org/10.1097/MNM.0b013e3281afa256.

    Article  CAS  PubMed  Google Scholar 

  50. Risum S, Hogdall C, Loft A, Berthelsen AK, Hogdall E, Nedergaard L, et al. The diagnostic value of PET/CT for primary ovarian cancer–a prospective study. Gynecol Oncol. 2007;105:145–9. https://doi.org/10.1016/j.ygyno.2006.11.022.

    Article  PubMed  Google Scholar 

  51. Nam EJ, Yun MJ, Oh YT, Kim JW, Kim JH, Kim S, et al. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol. 2010;116:389–94. https://doi.org/10.1016/j.ygyno.2009.10.059.

    Article  PubMed  Google Scholar 

  52. Cho H, Lee YS, Kim J, Chung JY, Kim JH. Overexpression of glucose transporter-1 (GLUT-1) predicts poor prognosis in epithelial ovarian cancer. Cancer Invest. 2013;31:607–15. https://doi.org/10.3109/07357907.2013.849722.

    Article  CAS  PubMed  Google Scholar 

  53. Semaan A, Munkarah AR, Arabi H, Bandyopadhyay S, Seward S, Kumar S, et al. Expression of GLUT-1 in epithelial ovarian carcinoma: correlation with tumor cell proliferation, angiogenesis, survival and ability to predict optimal cytoreduction. Gynecol Oncol. 2011;121:181–6. https://doi.org/10.1016/j.ygyno.2010.11.019.

    Article  CAS  PubMed  Google Scholar 

  54. Kitajima K, Murakami K, Yamasaki E, Kaji Y, Fukasawa I, Inaba N, et al. Diagnostic accuracy of integrated FDG-PET/contrast-enhanced CT in staging ovarian cancer: comparison with enhanced CT. Eur J Nucl Med Mol Imaging. 2008;35:1912–20. https://doi.org/10.1007/s00259-008-0890-2.

    Article  PubMed  Google Scholar 

  55. Yamamoto Y, Oguri H, Yamada R, Maeda N, Kohsaki S, Fukaya T. Preoperative evaluation of pelvic masses with combined 18F-fluorodeoxyglucose positron emission tomography and computed tomography. Int J Gynaecol Obstet. 2008;102:124–7. https://doi.org/10.1016/j.ijgo.2008.02.019.

    Article  PubMed  Google Scholar 

  56. Fenchel S, Grab D, Nuessle K, Kotzerke J, Rieber A, Kreienberg R, et al. Asymptomatic adnexal masses: correlation of FDG PET and histopathologic findings. Radiology. 2002;223:780–8. https://doi.org/10.1148/radiol.2233001850.

    Article  PubMed  Google Scholar 

  57. Tanizaki Y, Kobayashi A, Shiro M, Ota N, Takano R, Mabuchi Y, et al. Diagnostic value of preoperative SUVmax on FDG-PET/CT for the detection of ovarian cancer. Int J Gynecol Cancer Soc. 2014;24:454–60. https://doi.org/10.1097/igc.0000000000000074.

    Article  Google Scholar 

  58. Karantanis D, Allen-Auerbach M, Czernin J. Relationship among glycolytic phenotype, grade, and histological subtype in ovarian carcinoma. Clin Nucl Med. 2012;37:49–53. https://doi.org/10.1097/RLU.0b013e3182291e03.

    Article  PubMed  Google Scholar 

  59. Kurokawa T, Yoshida Y, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y, et al. Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer. 2004;109:926–32. https://doi.org/10.1002/ijc.20057.

    Article  CAS  PubMed  Google Scholar 

  60. Tsukioka M, Matsumoto Y, Noriyuki M, Yoshida C, Nobeyama H, Yoshida H, et al. Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis. Oncol Rep. 2007;18:361–7.

    CAS  PubMed  Google Scholar 

  61. Han S, Woo S, Suh CH, Lee JJ. Performance of pre-treatment (1)(8)F-fluorodeoxyglucose positron emission tomography/computed tomography for detecting metastasis in ovarian cancer: a systematic review and meta-analysis. J Gynecol Oncol. 2018;29:e98. https://doi.org/10.3802/jgo.2018.29.e98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim CY, Jeong SY, Chong GO, Son SH, Jung JH, Kim DH, et al. Quantitative metabolic parameters measured on F-18 FDG PET/CT predict survival after relapse in patients with relapsed epithelial ovarian cancer. Gynecol Oncol. 2015;136:498–504. https://doi.org/10.1016/j.ygyno.2014.12.032.

    Article  PubMed  Google Scholar 

  63. Konishi H, Takehara K, Kojima A, Okame S, Yamamoto Y, Shiroyama Y, et al. Maximum standardized uptake value of fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in ovarian clear cell adenocarcinoma. Int J Gynecol Cancer Soc. 2014;24:1190–4. https://doi.org/10.1097/igc.0000000000000180.

    Article  Google Scholar 

  64. Lee JW, Cho A, Lee JH, Yun M, Lee JD, Kim YT, et al. The role of metabolic tumor volume and total lesion glycolysis on (1)(8)F-FDG PET/CT in the prognosis of epithelial ovarian cancer. Eur J Nucl Med Mol Imaging. 2014;41:1898–906. https://doi.org/10.1007/s00259-014-2803-x.

    Article  PubMed  Google Scholar 

  65. Lee M, Lee H, Cheon GJ, Kim HS, Chung HH, Kim JW, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in patients with epithelial ovarian cancer. Eur Radiol. 2017;27:16–23. https://doi.org/10.1007/s00330-016-4368-5.

    Article  PubMed  Google Scholar 

  66. Liao S, Lan X, Cao G, Yuan H, Zhang Y. Prognostic predictive value of total lesion glycolysis from 18F-FDG PET/CT in post-surgical patients with epithelial ovarian cancer. Clin Nucl Med. 2013;38:715–20. https://doi.org/10.1097/RLU.0b013e31829f57fa.

    Article  PubMed  Google Scholar 

  67. Mayoral M, Fernandez-Martinez A, Vidal L, Fuster D, Aya F, Pavia J, et al. Prognostic value of (18)F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer. Rev Esp Med Nucl Imagen Mol. 2016;35:88–95. https://doi.org/10.1016/j.remn.2015.08.005.

    Article  CAS  PubMed  Google Scholar 

  68. Mayoral M, Paredes P, Saco A, Fuste P, Perlaza P, Tapias A, et al. Correlation of (18)F-FDG uptake on PET/CT with Ki67 immunohistochemistry in pre-treatment epithelial ovarian cancer. Rev Esp Med Nucl Imagen Mol. 2018;37:80–6. https://doi.org/10.1016/j.remn.2017.07.005.

    Article  CAS  PubMed  Google Scholar 

  69. Olsen BB, Gjedde A, Vilstrup MH, Johnsen IBG, Neumann G, Torigian DA, et al. Linked hexokinase and glucose-6-phosphatase activities reflect grade of ovarian malignancy. Mol Imag Biol. 2019;21:375–81. https://doi.org/10.1007/s11307-018-1247-2.

    Article  CAS  Google Scholar 

  70. Risum S, Loft A, Engelholm SA, Hogdall E, Berthelsen AK, Nedergaard L, et al. Positron emission tomography/computed tomography predictors of overall survival in stage IIIC/IV ovarian cancer. Int J Gynecol Cancer Soc. 2012;22:1163–9. https://doi.org/10.1097/IGC.0b013e3182606ecb.

    Article  Google Scholar 

  71. Vargas HA, Burger IA, Goldman DA, Micco M, Sosa RE, Weber W, et al. Volume-based quantitative FDG PET/CT metrics and their association with optimal debulking and progression-free survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery. Eur Radiol. 2015;25:3348–53. https://doi.org/10.1007/s00330-015-3729-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamamoto M, Tsujikawa T, Fujita Y, Chino Y, Kurokawa T, Kiyono Y, et al. Metabolic tumor burden predicts prognosis of ovarian cancer patients who receive platinum-based adjuvant chemotherapy. Cancer Sci. 2016;107:478–85. https://doi.org/10.1111/cas.12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ye S, Liu S, Xiang L, Wu X, Yang H. (18)F-FDG PET/CT-based metabolic metrics in recurrent tumors of ovarian clear cell carcinoma and their prognostic implications. BMC Cancer. 2019;19:226. https://doi.org/10.1186/s12885-019-5441-7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez Garcia B, Garcia Vicente AM, Jimenez Londono GA, Pena Pardo FJ, Bellon Guardia ME, Talavera Rubio MP, et al. (18)F-FDG PET/CT as predictor of tumour biology and prognosis in epithelial ovarian carcinoma. Rev Esp Med Nucl Imagen Mol. 2017;36:233–40. https://doi.org/10.1016/j.remn.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura K, Kodama J, Okumura Y, Hongo A, Kanazawa S, Hiramatsu Y. The SUVmax of 18F-FDG PET correlates with histological grade in endometrial cancer. Int J Gynecol Cancer Soc. 2010;20:110–5. https://doi.org/10.1111/IGC.0b013e3181c3a288.

    Article  Google Scholar 

  76. Chung HH, Kwon HW, Kang KW, Park NH, Song YS, Chung JK, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2012;19:1966–72. https://doi.org/10.1245/s10434-011-2153-x.

    Article  PubMed  Google Scholar 

  77. Gallicchio R, Nardelli A, Venetucci A, Capacchione D, Pelagalli A, Sirignano C, et al. F-18 FDG PET/CT metabolic tumor volume predicts overall survival in patients with disseminated epithelial ovarian cancer. Eur J Radiol. 2017;93:107–13. https://doi.org/10.1016/j.ejrad.2017.05.036.

    Article  PubMed  Google Scholar 

  78. Alessi A, Martinelli F, Padovano B, Serafini G, Lorusso D, Lorenzoni A, et al. FDG-PET/CT to predict optimal primary cytoreductive surgery in patients with advanced ovarian cancer: preliminary results. Tumori. 2016;102:103–7. https://doi.org/10.5301/tj.5000396.

    Article  CAS  PubMed  Google Scholar 

  79. Chong GO, Jeong SY, Lee YH, Lee HJ, Lee SW, Han HS, et al. The ability of whole-body SUVmax in F-18 FDG PET/CT to predict suboptimal cytoreduction during primary debulking surgery for advanced ovarian cancer. J Ovarian Res. 2019;12:12. https://doi.org/10.1186/s13048-019-0488-2.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chundury A, Apicelli A, DeWees T, Powell M, Mutch D, Thaker P, et al. Intensity modulated radiation therapy for recurrent ovarian cancer refractory to chemotherapy. Gynecol Oncol. 2016;141:134–9. https://doi.org/10.1016/j.ygyno.2016.02.005.

    Article  PubMed  Google Scholar 

  81. Du XL, Jiang T, Sheng XG, Li QS, Wang C, Yu H. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer. Eur J Radiol. 2012;81:3551–6. https://doi.org/10.1016/j.ejrad.2012.03.016.

    Article  PubMed  Google Scholar 

  82. Ebina Y, Watari H, Kaneuchi M, Takeda M, Hosaka M, Kudo M, et al. Impact of FDG PET in optimizing patient selection for cytoreductive surgery in recurrent ovarian cancer. Eur J Nucl Med Mol Imaging. 2014;41:446–51. https://doi.org/10.1007/s00259-013-2610-9.

    Article  CAS  PubMed  Google Scholar 

  83. Liu S, Feng Z, Wen H, Jiang Z, Pan H, Deng Y, et al. (18)F-FDG PET/CT can predict chemosensitivity and proliferation of epithelial ovarian cancer via SUVmax value. Jpn J Radiol. 2018;36:544–50. https://doi.org/10.1007/s11604-018-0755-y.

    Article  PubMed  Google Scholar 

  84. Roze JF, Hoogendam JP, van de Wetering FT, Spijker R, Verleye L, Vlayen J, et al. Positron emission tomography (PET) and magnetic resonance imaging (MRI) for assessing tumour resectability in advanced epithelial ovarian/fallopian tube/primary peritoneal cancer. Cochrane Database Syst Rev. 2018;10:CD012567. https://doi.org/10.1002/14651858.CD012567.pub2.

    Article  PubMed  Google Scholar 

  85. Vallius T, Peter A, Auranen A, Carpen O, Kemppainen J, Matomaki J, et al. 18F-FDG-PET/CT can identify histopathological non-responders to platinum-based neoadjuvant chemotherapy in advanced epithelial ovarian cancer. Gynecol Oncol. 2016;140:29–35. https://doi.org/10.1016/j.ygyno.2015.10.018.

    Article  PubMed  Google Scholar 

  86. Signorelli M, Guerra L, Pirovano C, Crivellaro C, Fruscio R, Buda A, et al. Detection of nodal metastases by 18F-FDG PET/CT in apparent early stage ovarian cancer: a prospective study. Gynecol Oncol. 2013;131:395–9. https://doi.org/10.1016/j.ygyno.2013.08.022.

    Article  PubMed  Google Scholar 

  87. Lopez-Lopez V, Cascales-Campos PA, Gil J, Frutos L, Andrade RJ, Fuster-Quinonero M, et al. Use of (18)F-FDG PET/CT in the preoperative evaluation of patients diagnosed with peritoneal carcinomatosis of ovarian origin, candidates to cytoreduction and hipec. Eur J Radiol. 2016;85:1824–8. https://doi.org/10.1016/j.ejrad.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  88. Yuan Y, Gu ZX, Tao XF, Liu SY. Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: a meta-analysis. Eur J Radiol. 2012;81:1002–6. https://doi.org/10.1016/j.ejrad.2011.01.112.

    Article  PubMed  Google Scholar 

  89. Fruscio R, Sina F, Dolci C, Signorelli M, Crivellaro C, Dell’Anna T, et al. Preoperative 18F-FDG PET/CT in the management of advanced epithelial ovarian cancer. Gynecol Oncol. 2013;131:689–93. https://doi.org/10.1016/j.ygyno.2013.09.024.

    Article  PubMed  Google Scholar 

  90. Hynninen J, Auranen A, Carpen O, Dean K, Seppanen M, Kemppainen J, et al. FDG PET/CT in staging of advanced epithelial ovarian cancer: frequency of supradiaphragmatic lymph node metastasis challenges the traditional pattern of disease spread. Gynecol Oncol. 2012;126:64–8. https://doi.org/10.1016/j.ygyno.2012.04.023.

    Article  PubMed  Google Scholar 

  91. Risum S, Hogdall C, Loft A, Berthelsen AK, Hogdall E, Nedergaard L, et al. Does the use of diagnostic PET/CT cause stage migration in patients with primary advanced ovarian cancer? Gynecol Oncol. 2010;116:395–8. https://doi.org/10.1016/j.ygyno.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  92. Funicelli L, Travaini LL, Landoni F, Trifiro G, Bonello L, Bellomi M. Peritoneal carcinomatosis from ovarian cancer: the role of CT and [(1)(8)F]FDG-PET/CT. Abdom Imaging. 2010;35:701–7. https://doi.org/10.1007/s00261-009-9578-8.

    Article  CAS  PubMed  Google Scholar 

  93. Hynninen J, Laasik M, Vallius T, Kemppainen J, Gronroos S, Virtanen J, et al. Clinical Value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in response evaluation after primary treatment of advanced epithelial ovarian cancer. Clin Onco (R Coll Radiol). 2018;30:507–14. https://doi.org/10.1016/j.clon.2018.04.007.

    Article  CAS  Google Scholar 

  94. Vallius T, Hynninen J, Kemppainen J, Alves V, Auranen K, Matomaki J, et al. (18)F-FDG-PET/CT based total metabolic tumor volume change during neoadjuvant chemotherapy predicts outcome in advanced epithelial ovarian cancer. Eur J Nucl Med Mol Imaging. 2018;45:1224–32. https://doi.org/10.1007/s00259-018-3961-z.

    Article  CAS  PubMed  Google Scholar 

  95. Aide N, Fauchille P, Coquan E, Ferron G, Combe P, Meunier J, et al. Predicting tumor response and outcome of second-look surgery with (18)F-FDG PET/CT: insights from the GINECO CHIVA phase II trial of neoadjuvant chemotherapy plus nintedanib in stage IIIc-IV FIGO ovarian cancer. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-05092-3.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Amit A, Hodes A, Lavie O, Keidar Z, Matanes E, Lowenstein L. The role of F18-FDG PET/CT in predicting secondary optimal de-bulking in patients with recurrent ovarian cancer. Surg Oncol. 2017;26:347–51. https://doi.org/10.1016/j.suronc.2017.07.004.

    Article  PubMed  Google Scholar 

  97. Han EJ, Park HL, Lee YS, Park EK, Song MJ, Yoo IR, et al. Clinical usefulness of post-treatment FDG PET/CT in patients with ovarian malignancy. Ann Nucl Med. 2016;30:600–7. https://doi.org/10.1007/s12149-016-1100-0.

    Article  CAS  PubMed  Google Scholar 

  98. Palomar Munoz A, Cordero Garcia JM, Talavera Rubio MDP, Garcia Vicente AM, Pena Pardo FJ, Jimenez Londono GA, et al. Value of [18F]FDG-PET/CT and CA125, serum levels and kinetic parameters, in early detection of ovarian cancer recurrence: Influence of histological subtypes and tumor stages. Medicine. 2018;97:e0098. https://doi.org/10.1097/md.0000000000010098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Palomar Munoz A, Cordero Garcia JM, Talavera Rubio P, Garcia Vicente AM, Gonzalez Garcia B, Bellon Guardia ME, et al. Usefulness of CA125 and its kinetic parameters and positron emission tomography/computed tomography (PET/CT) with fluorodeoxyglucose ([(18)F] FDG) in the detection of recurrent ovarian cancer. Med Clin. 2018;151:97–102. https://doi.org/10.1016/j.medcli.2017.11.019.

    Article  Google Scholar 

  100. Tawakol A, Abdelhafez YG, Osama A, Hamada E, El Refaei S. Diagnostic performance of 18F-FDG PET/contrast-enhanced CT versus contrast-enhanced CT alone for post-treatment detection of ovarian malignancy. Nucl Med Commun. 2016;37:453–60. https://doi.org/10.1097/mnm.0000000000000477.

    Article  CAS  PubMed  Google Scholar 

  101. Suppiah S, Chang WL, Hassan HA, Kaewput C, Asri AAA, Saad FFA, et al. Systematic review on the accuracy of positron emission tomography/computed tomography and positron emission tomography/magnetic resonance imaging in the management of ovarian cancer: is functional information really needed? World J Nucl Med. 2017;16:176–85. https://doi.org/10.4103/wjnm.WJNM_31_17.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Santillan A, Garg R, Zahurak ML, Gardner GJ, Giuntoli RL 2nd, Armstrong DK, et al. Risk of epithelial ovarian cancer recurrence in patients with rising serum CA-125 levels within the normal range. J Clin Oncol. 2005;23:9338–43. https://doi.org/10.1200/jco.2005.02.2582.

    Article  PubMed  Google Scholar 

  103. Evangelista L, Palma MD, Gregianin M, Nardin M, Roma A, Nicoletto MO, et al. Diagnostic and prognostic evaluation of fluorodeoxyglucose positron emission tomography/computed tomography and its correlation with serum cancer antigen-125 (CA125) in a large cohort of ovarian cancer patients. J Turk Ger Gynecol Assoc. 2015;16:137–44. https://doi.org/10.5152/jtgga.2015.15251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ghosh J, Thulkar S, Kumar R, Malhotra A, Kumar A, Kumar L. Role of FDG PET-CT in asymptomatic epithelial ovarian cancer with rising serum CA-125: a pilot study. Natl Med J India. 2013;26:327–31.

    PubMed  Google Scholar 

  105. Peng NJ, Liou WS, Liu RS, Hu C, Tsay DG, Liu CB. Early detection of recurrent ovarian cancer in patients with low-level increases in serum CA-125 levels by 2-[F-18]fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. Cancer Biother Radiopharm. 2011;26:175–81. https://doi.org/10.1089/cbr.2010.0872.

    Article  CAS  PubMed  Google Scholar 

  106. Ruiz-Hernandez G, Delgado-Bolton RC, Fernandez-Perez C, Lapena-Gutierrez L, Carreras-Delgado JL. Meta-analysis of the diagnostic efficacy of FDG-PET in patients with suspected ovarian cancer recurrence. Rev Esp Med Nucl. 2005;24:161–73. https://doi.org/10.1157/13073787.

    Article  CAS  PubMed  Google Scholar 

  107. Mangili G, Picchio M, Sironi S, Vigano R, Rabaiotti E, Bornaghi D, et al. Integrated PET/CT as a first-line re-staging modality in patients with suspected recurrence of ovarian cancer. Eur J Nucl Med Mol Imaging. 2007;34:658–66. https://doi.org/10.1007/s00259-006-0306-0.

    Article  CAS  PubMed  Google Scholar 

  108. Ruiz-Hernandez G, Delgado-Bolton RC, Fernandez-Perez C, Lapena L, Jimenez-Vicioso A, Perez-Castejon MJ, et al. Impact of positron emission tomography with FDG-PET in treatment of patients with suspected recurrent ovarian cancer. Rev Esp Med Nucl. 2005;24:113–26. https://doi.org/10.1157/13071687.

    Article  CAS  PubMed  Google Scholar 

  109. Simcock B, Neesham D, Quinn M, Drummond E, Milner A, Hicks RJ. The impact of PET/CT in the management of recurrent ovarian cancer. Gynecol Oncol. 2006;103:271–6. https://doi.org/10.1016/j.ygyno.2006.03.004.

    Article  PubMed  Google Scholar 

  110. You JJ, Cline KJ, Gu CS, Pritchard KI, Dayes IS, Gulenchyn KY, et al. (18)F-fluorodeoxyglucose positron-emission tomography-computed tomography to diagnose recurrent cancer. Br J Cancer. 2015;112:1737–43. https://doi.org/10.1038/bjc.2015.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol. 2008;26:2155–61. https://doi.org/10.1200/jco.2007.14.5631.

    Article  PubMed  Google Scholar 

  112. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hanna L, et al. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer. 2009;115:410–8. https://doi.org/10.1002/cncr.24000.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the International Atomic Energy Agency (IAEA) for scientific and logistic support. They also appreciate the contribution of the EANM National Societies of Nuclear Medicine and EANM committees who reviewed the guideline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Delgado Bolton.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Participating associations

EANM: Roberto C. Delgado Bolton, Nicolas Aide, and Francesco Giammarile

IAEA: Francesco Giammarile and Diana Paez

ACNM and SNMMI: Patrick M. Colletti

Endorsements

IAEA: endorsed 04/2021

ACNM: endorsed 04/2021

SNMMI: endorsed 04/2021

This article is part of the Topical Collection on Oncology - Genitourinary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado Bolton, R.C., Aide, N., Colletti, P.M. et al. EANM guideline on the role of 2-[18F]FDG PET/CT in diagnosis, staging, prognostic value, therapy assessment and restaging of ovarian cancer, endorsed by the American College of Nuclear Medicine (ACNM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI) and the International Atomic Energy Agency (IAEA). Eur J Nucl Med Mol Imaging 48, 3286–3302 (2021). https://doi.org/10.1007/s00259-021-05450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05450-9

Keywords

Navigation