Skip to main content

Advertisement

Log in

Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The pqqC and phoD genes encode pyrroloquinoline quinone synthase and alkaline phosphomonoesterase (ALP), respectively. These genes play a crucial role in regulating the solubilization of inorganic phosphorus (Pi) and the mineralization of organic phosphorus (Po), making them valuable markers for P-mobilizing bacterial. However, there is limited understanding of how the interplay between soil P-mobilizing bacterial communities and abiotic factors influences P transformation and availability in the context of long-term fertilization scenarios. We used real-time polymerase chain reaction and high-throughput sequencing to explore the characteristics of soil P-mobilizing bacterial communities and their relationships with key physicochemical properties and P fractions under long-term fertilization scenarios. In a 38-year fertilization experiment, six fertilization treatments were selected. These treatments were sorted into three groups: the non-P-amended group, including no fertilization and mineral NK fertilizer; the sole mineral-P-amended group, including mineral NP and NPK fertilizer; and the organically amended group, including sole organic fertilizer and organic fertilizer plus mineral NPK fertilizer. The organically amended group significantly increased soil labile P (Ca2-P and enzyme-P) and Olsen-P content and proportion but decreased non-labile P (Ca10-P) proportion compared with the sole mineral-P-amended group, indicating enhanced P availability in the soil. Meanwhile, the organically amended group significantly increased soil ALP activity and pqqC and phoD gene abundances, indicating that organic fertilization promotes the activity and abundance of microorganisms involved in P mobilization processes. Interestingly, the organically amended group dramatically reshaped the community structure of P-mobilizing bacteria and increased the relative abundance of Acidiphilium, Panacagrimonas, Hansschlegelia, and Beijerinckia. These changes had a greater positive impact on ALP activity, labile P, and Olsen-P content compared to the abundance of P-mobilizing genes alone, indicating their importance in driving P mobilization processes. Structural equation modeling indicated that soil organic carbon and Po modulated the relationship between P-mobilizing bacterial communities and labile P and Olsen-P, highlighting the influence of SOC and Po on the functioning of P-mobilizing bacteria and their impact on P availability. Overall, our study demonstrates that organic fertilization has the potential to reshape the structure of P-mobilizing bacterial communities, leading to increased P mobilization and availability in the soil. These findings contribute to our understanding of the mechanisms underlying P cycling in agricultural systems and provide valuable insights for enhancing microbial P mobilization through organic fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw sequences of pqqC- and phoD-harboring bacterial were deposited in the National Center for Biotechnology Information Sequence Read Archive database with the sample accession PRJNA956135.

References

  1. Huang J, Xu C, Ridoutt BG, Wang X, Ren P (2017) Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J Clean Prod 159:171–179. https://doi.org/10.1016/j.jclepro.2017.05.008

    Article  Google Scholar 

  2. Peñuelas J, Poulter B, Sardans J, Ciais P, Van Der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934. https://doi.org/10.1038/ncomms3934

    Article  CAS  PubMed  Google Scholar 

  3. Luo G, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo S, Shen Q (2017) Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol Fertil Soils 53:375–388. https://doi.org/10.1007/s00374-017-1183-3

    Article  CAS  Google Scholar 

  4. Shen P, Xu M, Zhang H, Yang X, Huang S, Zhang S, He X (2014) Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena 118:20–27. https://doi.org/10.1016/j.catena.2014.01.020

    Article  CAS  Google Scholar 

  5. Bi QF, Li KJ, Zheng BX, Liu XP, Li HZ, Jin BJ, Ding K, Yang XR, Lin XY, Zhu YG (2020) Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ 703:134977. https://doi.org/10.1016/j.scitotenv.2019.134977

    Article  CAS  PubMed  Google Scholar 

  6. Sun R, Zhang XX, Guo X, Wang D, Chu H (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18. https://doi.org/10.1016/j.soilbio.2015.05.007

    Article  CAS  Google Scholar 

  7. Motavalli P, Miles R (2002) Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol Fertil Soils 36:35–42. https://doi.org/10.1007/s00374-002-0500-6

    Article  CAS  Google Scholar 

  8. Tiessen H (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Ann Arbor, Michigan

    Google Scholar 

  9. Garcia-Velazquez L, Rodríguez A, Gallardo A, Maestre FT, Ed S, Lafuente A, Fernandez-Alonso MJ, Singh BK, Wang J, Durán J (2020) Climate and soil micro-organisms drive soil phosphorus fractions in coastal dune systems. Funct Ecol 34:1690–1701. https://doi.org/10.1111/1365-2435.13606

    Article  Google Scholar 

  10. Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z (2004) Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crop Res 86:225–238. https://doi.org/10.1016/j.fcr.2003.08.013

    Article  Google Scholar 

  11. Tiessen H, Moir J (1993) Characterization of available P by sequential extraction. Soil Sampling Methods Anal 7:5–229

    Google Scholar 

  12. Jiang B, Gu Y (1989) A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fert Res 20:159–165. https://doi.org/10.1007/BF01054551

    Article  Google Scholar 

  13. Li F-R, Liu L-L, Liu J-L, Yang K (2019) Abiotic and biotic controls on dynamics of labile phosphorus fractions in calcareous soils under agricultural cultivation. Sci Total Environ 681:163–174. https://doi.org/10.1016/j.scitotenv.2019.05.091

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed W, Liu K, Qaswar M, Huang J, Huang Q, Xu Y, Ali S, Mehmood S, Ammar Asghar RM, Mahmood M (2019) Long-term mineral fertilization improved the grain yield and phosphorus use efficiency by changing soil P fractions in ferralic Cambisol. Agronomy 9:784. https://doi.org/10.3390/agronomy9120784

    Article  CAS  Google Scholar 

  15. Nunes RS, de Sousa DMG, Goedert WJ, de Oliveira LEZ, Pavinato PS, Pinheiro TD (2020) Distribution of soil phosphorus fractions as a function of long-term soil tillage and phosphate fertilization management. Front Earth Sci 8:350. https://doi.org/10.3389/feart.2020.00350

    Article  Google Scholar 

  16. Wan W, Li X, Han S, Wang L, Luo X, Chen W, Huang Q (2020) Soil aggregate fractionation and phosphorus fraction driven by long-term fertilization regimes affect the abundance and composition of P-cycling-related bacteria. Soil Tillage Res 196:104475. https://doi.org/10.1016/j.still.2019.104475

    Article  Google Scholar 

  17. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. https://doi.org/10.1007/s11104-006-9056-9

    Article  CAS  Google Scholar 

  18. Wagh J, Shah S, Bhandari P, Archana G, Kumar GN (2014) Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol 98:5117–5129. https://doi.org/10.1007/s00253-014-5610-1

    Article  CAS  PubMed  Google Scholar 

  19. Hu M, Peñuelas J, Sardans J, Tong C, Chang CT, Cao W (2020) Dynamics of phosphorus speciation and the phoD phosphatase gene community in the rhizosphere and bulk soil along an estuarine freshwater-oligohaline gradient. Geoderma 365:114236. https://doi.org/10.1016/j.geoderma.2020.114236

    Article  CAS  Google Scholar 

  20. Choi O, Kim J, Kim J-G, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657. https://doi.org/10.1104/pp.107.112748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomez PF, Ingram L (1995) Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis. FEMS Microbiol Lett 125:237–245. https://doi.org/10.1111/j.1574-6968.1995.tb07364.x

    Article  CAS  PubMed  Google Scholar 

  22. Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soils 49:661–672. https://doi.org/10.1007/s00374-012-0755-5

    Article  CAS  Google Scholar 

  23. Wang M, Wu Y, Zhao J, Liu Y, Chen Z, Tang Z, Tian W, Xi Y, Zhang J (2022) Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Sci Total Environ 821:153406. https://doi.org/10.1016/j.scitotenv.2022.153406

    Article  CAS  PubMed  Google Scholar 

  24. Hu Y, Xia Y, Sun Q, Liu K, Chen X, Ge T, Zhu B, Zhu Z, Zhang Z, Su Y (2018) Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci Total Environ 628:53–63. https://doi.org/10.1016/j.scitotenv.2018.01.314

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Jiang N, Chen Z, Tian J, Sun N, Xu M, Chen L (2017) Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl Soil Ecol 119:197–204. https://doi.org/10.1016/j.apsoil.2017.06.019

    Article  Google Scholar 

  26. Qin X, Guo S, Zhai L, Pan J, Khoshnevisan B, Wu S, Wang H, Yang B, Ji J, Liu H (2020) How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil. Environ Pollut 266:115304. https://doi.org/10.1016/j.envpol.2020.115304

    Article  CAS  PubMed  Google Scholar 

  27. Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, Wei D, Li D, Ma B, Tang C (2020) Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J 14:757–770. https://doi.org/10.1038/s41396-019-0567-9

    Article  CAS  PubMed  Google Scholar 

  28. Luo G, Li L, Friman V-P, Guo J, Guo S, Shen Q, Ling N (2018) Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biol Biochem 124:105–115. https://doi.org/10.1016/j.soilbio.2018.06.002

    Article  CAS  Google Scholar 

  29. Shi W, Xing Y, Zhu Y, Gao N, Ying Y (2022) Diverse responses of pqqC- and phoD-harbouring bacterial communities to variation in soil properties of Moso bamboo forests. Microb Biotechnol 15(7):2097–2111. https://doi.org/10.1111/1751-7915.14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brucker E, Kernchen S, Spohn M (2020) Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon. Soil Biol Biochem 143:107737. https://doi.org/10.1016/j.soilbio.2020.107737

    Article  CAS  Google Scholar 

  31. Shao G, Ai J, Sun Q, Hou L, Dong Y (2020) Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecol Indic 115:106439. https://doi.org/10.1016/j.ecolind.2020.106439

    Article  CAS  Google Scholar 

  32. Tiessen H, Moir J (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 187–201

    Google Scholar 

  33. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture

    Google Scholar 

  34. Thomas R, Sheard R, Moyer J (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion 1. Agron J 59:240–243. https://doi.org/10.2134/agronj1967.00021962005900030010x

    Article  CAS  Google Scholar 

  35. Xu M, Gao P, Yang Z, Su L, Wu J, Yang G, Zhang X, Ma J, Peng H, Xiao Y (2019) Biochar impacts on phosphorus cycling in rice ecosystem. Chemosphere 225:311–319. https://doi.org/10.1016/j.chemosphere.2019.03.069

    Article  CAS  PubMed  Google Scholar 

  36. Sparling G, Vojvodić-Vuković M, Schipper L (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem 30:1469–1472. https://doi.org/10.1016/S0038-0717(98)00040-6

    Article  CAS  Google Scholar 

  37. Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. Forestry Canada, Edmonton (Alberta), pp 116

    Google Scholar 

  38. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  39. Brookes P, Powlson D, Jenkinson D (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. https://doi.org/10.1016/0038-0717(82)90001-3

    Article  CAS  Google Scholar 

  40. Liu Y, Jia R, Yang H, Xing Z, Shi G, Cui Z (2022) Effects of sand burial caused by ant nests on soil microbial biomass, basal respiration, and enzyme activity in/under biocrusts in vegetated areas of the Tennger Desert. Land Degrad Dev 33:1596–1607. https://doi.org/10.1002/ldr.4227

    Article  Google Scholar 

  41. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  42. Deng S, Popova I (2011) Carbohydrate hydrolases. Method Soil Enzymol 9:185–209. https://doi.org/10.2136/sssabookser9.c9

    Article  CAS  Google Scholar 

  43. Sun Q, Jia R, Qin J, Wang Y, Lu X, Yang P, Bai Y (2023) Grassland management regimes regulate soil phosphorus fractions and conversion between phosphorus pools in semiarid steppe ecosystems. Biogeochemistry:1–16. https://doi.org/10.1007/s10533-023-01019-w

  44. Saunders W, Williams E (1955) Observations on the determination of total organic phosphorus in soils. J Soil Sci 6:254–267. https://doi.org/10.1111/j.1365-2389.1955.tb00849.x

    Article  CAS  Google Scholar 

  45. Wei X, Hu Y, Cai G, Yao H, Ye J, Sun Q, Veresoglou SD, Li Y, Zhu Z, Guggenberger G (2021) Organic phosphorus availability shapes the diversity of phoD-harboring bacteria in agricultural soil. Soil Biol Biochem 161:108364. https://doi.org/10.1016/j.soilbio.2021.108364

    Article  CAS  Google Scholar 

  46. DeLuca TH, Glanville HC, Harris M, Emmett BA, Pingree MR, de Sosa LL, Cerdá-Moreno C, Jones DL (2015) A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biol Biochem 88:110–119. https://doi.org/10.1016/j.soilbio.2015.05.016

    Article  CAS  Google Scholar 

  47. Ragot SA, Kertesz MA, Bünemann EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl Environ Microbiol 81:7281–7289. https://doi.org/10.1128/AEM.01823-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng BX, Hao XL, Ding K, Zhou GW, Chen QL, Zhang JB, Zhu YG (2017) Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. Sci Rep 7:1–10. https://doi.org/10.1038/srep42284

    Article  CAS  Google Scholar 

  49. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Package ‘vegan’. Community Ecol Package Version 2:1–295

    Google Scholar 

  50. Wu Q, Zhang S, Zhu P, Huang S, Wang B, Zhao L, Xu M (2017) Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization. PLoS One 12:e0176437. https://doi.org/10.1371/journal.pone.0176437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahmed W, Jing H, Kailou L, Ali S, Tianfu H, Geng S, Jin C, Qaswar M, Jiangxue D, Mahmood S (2021) Impacts of long-term inorganic and organic fertilization on phosphorus adsorption and desorption characteristics in red paddies in southern China. PLoS One 16:e0246428. https://doi.org/10.1371/journal.pone.0246428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song K, Zheng X, Lv W, Qin Q, Sun L, Zhang H, Xue Y (2019) Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-40908-9

    Article  CAS  Google Scholar 

  53. Sharpley AN, Halvorson A (2020) The management of soil phosphorus availability and its impact on surface water qualitySoil processes and water quality. CRC Press, pp 7–90

    Google Scholar 

  54. Zhang Y, Gao W, Ma L, Luan H, Tang J, Li R, Li M, Huang S, Wang L (2023) Long-term partial substitution of chemical fertilizer by organic amendments influences soil microbial functional diversity of phosphorus cycling and improves phosphorus availability in greenhouse vegetable production. Agric Ecosyst Environ 341:108193. https://doi.org/10.1016/j.agee.2022.108193

    Article  CAS  Google Scholar 

  55. Yang J, Wang Z, Zhou J, Jiang H, Zhang J, Pan P, Han Z, Lu C, Li L, Ge C (2012) Inorganic phosphorus fractionation and its translocation dynamics in a low-P soil. J Environ Radioact 112:64–69. https://doi.org/10.1016/j.jenvrad.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  56. Wang B, Xu M, Wen S (2002) The effects of long term fertilization on chemical fractions and availability of inorgauic phosphate in red soil upland. J Hunan Agric Univ 28:293–297

    CAS  Google Scholar 

  57. George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil 427:191–208. https://doi.org/10.1007/s11104-017-3391-x

    Article  CAS  Google Scholar 

  58. Haygarth PM, Harrison A, Turner B (2018) On the history and future of soil organic phosphorus research: a critique across three generations. Eur J Soil Sci 69:86–94. https://doi.org/10.1111/ejss.12517

    Article  Google Scholar 

  59. Chen S, Wang L, Zhang S, Li N, Wei X, Wei Y, Wei L, Li J, Huang S, Chen Q (2023) Soil organic carbon stability mediate soil phosphorus in greenhouse vegetable soil by shifting phoD-harboring bacterial communities and keystone taxa. Sci Total Environ 873:162400. https://doi.org/10.1016/j.scitotenv.2023.162400

    Article  CAS  PubMed  Google Scholar 

  60. Chen S, Jiang J, Wei L, Lei J, Fenton O, Daly K, Chen Q (2021) Partial substitution of chemical fertilizers with manure alters soil phosphorus fractions and optimizes vegetable production in alkaline soil. Arch Agron Soil Sci:1–16. https://doi.org/10.1080/03650340.2021.2018575

  61. Mengmeng C, Shirong Z, Lipeng W, Chao F, Xiaodong D (2021) Organic fertilization improves the availability and adsorptive capacity of phosphorus in saline-alkaline soils. J Soil Sci Plant Nutr 21:487–496. https://doi.org/10.1007/s42729-020-00377-w

    Article  CAS  Google Scholar 

  62. Eivazi F, Tabatabai M (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172. https://doi.org/10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  63. Luo G, Sun B, Li L, Li M, Liu M, Zhu Y, Guo S, Ling N, Shen Q (2019) Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD-and phoC-harboring functional microbial populations. Soil Biol Biochem 139:107632. https://doi.org/10.1016/j.soilbio.2019.107632

    Article  CAS  Google Scholar 

  64. Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2010) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function Soil enzymology. Springer, pp 229–243

    Google Scholar 

  65. Jing Z, Chen R, Wei S, Feng Y, Zhang J, Lin X (2017) Response and feedback of C mineralization to P availability driven by soil microorganisms. Soil Biol Biochem 105:111–120. https://doi.org/10.1016/j.soilbio.2016.11.014

    Article  CAS  Google Scholar 

  66. Wang J, Wu Y, Zhou J, Bing H, Sun H (2016) Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biol Fertil Soils 52:825–839. https://doi.org/10.1007/s00374-016-1123-7

    Article  CAS  Google Scholar 

  67. Kotroczó Z, Veres Z, Fekete I, Krakomperger Z, Tóth JA, Lajtha K, Tóthmérész B (2014) Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol Biochem 70:237–243. https://doi.org/10.1016/j.soilbio.2013.12.028

    Article  CAS  Google Scholar 

  68. Siles JA, Starke R, Martinovic T, Fernandes MLP, Orgiazzi A, Bastida F (2022) Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining. Soil Biol Biochem 174:108826. https://doi.org/10.1016/j.soilbio.2022.108826

    Article  CAS  Google Scholar 

  69. Cao N, Zhi M, Zhao W, Pang J, Hu W, Zhou Z, Meng Y (2022) Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil Tillage Res 220:105390. https://doi.org/10.1016/j.still.2022.105390

    Article  Google Scholar 

  70. Fraser T, Lynch DH, Entz MH, Dunfield KE (2015) Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma 257:115–122. https://doi.org/10.1016/j.geoderma.2014.10.016

    Article  CAS  Google Scholar 

  71. Xu L, Cao H, Li C, Wang C, He N, Hu S, Yao M, Wang C, Wang J, Zhou S (2022) The importance of rare versus abundant phoD-harboring subcommunities in driving soil alkaline phosphatase activity and available P content in Chinese steppe ecosystems. Soil Biol Biochem 164:108491. https://doi.org/10.1016/j.soilbio.2021.108491

    Article  CAS  Google Scholar 

  72. Chen X, Jiang N, Condron LM, Dunfield KE, Chen Z, Wang J, Chen L (2019) Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 349:36–44. https://doi.org/10.1016/j.geoderma.2019.04.039

    Article  CAS  Google Scholar 

  73. Zhang Y, Wei G, Luan H, Tang J, Li R, Li M, Zhang H, Huang S (2022) Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system. J Integr Agric 21:2119–2133. https://doi.org/10.1016/S2095-3119(21)63715-2

    Article  CAS  Google Scholar 

  74. Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S (2016) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbiol 18:1988–2000. https://doi.org/10.1111/1462-2920.13188

    Article  CAS  PubMed  Google Scholar 

  75. Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe (III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe (III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640. https://doi.org/10.1128/AEM.65.8.3633-3640.1999

    Article  PubMed  PubMed Central  Google Scholar 

  76. González E, Rodríguez JM, Muñoz JÁ, Blázquez ML, Ballester A, González F (2018) The contribution of Acidiphilium cryptum to the dissolution of low-grade manganese ores. Hydrometallurgy 175:312–318. https://doi.org/10.1016/j.hydromet.2017.12.008

    Article  CAS  Google Scholar 

  77. Priya A, Hait S (2018) Feasibility of bioleaching of selected metals from electronic waste by Acidiphilium acidophilum. Waste Biomass Valori 9:871–877. https://doi.org/10.1007/s12649-017-9833-0

    Article  CAS  Google Scholar 

  78. Bridge TA, Johnson DB (2000) Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol J 17:193–206. https://doi.org/10.1080/01490450050121161

    Article  CAS  Google Scholar 

  79. Xiao C-q, Chi R-a, Fang Y-j (2013) Effects of Acidiphilium cryptum on biosolubilization of rock phosphate in the presence of Acidithiobacillus ferrooxidans. T Nonferr Metal Soc 23:2153–2159. https://doi.org/10.1016/S1003-6326(13)62711-9

    Article  CAS  Google Scholar 

  80. Wu Q, Xiao J, Fu L, Ma M, Peng S (2020) Microporous intermittent aeration vertical flow constructed wetlands for eutrophic water improvement. Environ Sci Pollut R 27:16574–16583. https://doi.org/10.1007/s11356-020-08067-x

    Article  CAS  Google Scholar 

  81. Wang J, Niu W, Li Y, Lv W (2018) Subsurface drip irrigation enhances soil nitrogen and phosphorus metabolism in tomato root zones and promotes tomato growth. Appl Soil Ecol 124:240–251. https://doi.org/10.1016/j.apsoil.2017.11.014

    Article  CAS  Google Scholar 

  82. Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, Hernández T, Richnow HH, Starke R, García C (2016) The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol 25:4660–4673. https://doi.org/10.1111/mec.13783

    Article  CAS  PubMed  Google Scholar 

  83. Spohn M (2016) Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl Ecol 17:471–478. https://doi.org/10.1016/j.baae.2016.05.003

    Article  Google Scholar 

  84. Liu S, Zeng J, Yu H, Wang C, Yang Y, Wang J, He Z, Yan Q (2023) Antimony efflux underpins phosphorus cycling and resistance of phosphate-solubilizing bacteria in mining soils. ISME J:1–12. https://doi.org/10.1038/s41396-023-01445-6

  85. Cheng H, Zhou X, Dong R, Wang X, Liu G, Li Q (2022) Priming of soil organic carbon mineralization and its temperature sensitivity in response to vegetation restoration in a karst area of Southwest China. Sci Total Environ 851:158400. https://doi.org/10.1016/j.scitotenv.2022.158400

    Article  CAS  PubMed  Google Scholar 

  86. Zou X, Li X, Wang XM, Chen Q, Gao M, Qiu T, Sun J, Gao J (2013) Hansschlegelia beijingensis sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic bacterium isolated from watermelon rhizosphere soil. Int J Syst Evol Microbiol 63:3715–3719. https://doi.org/10.1099/ijs.0.052308-0

    Article  CAS  PubMed  Google Scholar 

  87. Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Beijerinckia derxii releases plant growth regulators and amino acids in synthetic media independent of nitrogenase activity. J Appl Microbiol 95:799–806. https://doi.org/10.1046/j.1365-2672.2003.02047.x

    Article  CAS  PubMed  Google Scholar 

  88. Becking J (1974) Nitrogen-fixing bacteria of the genus Beijerinckia. Soil Sci 118:196–212. https://doi.org/10.1097/00010694-197409000-00010

    Article  CAS  Google Scholar 

  89. Manjunath A, Mohan R, Bagyaraj D (1981) Interaction between Beijerinckia mobilis, Aspergillus niger and Glomus fasciculatus and their effects on growth of onion. New Phytol 87:723–727

    Article  Google Scholar 

  90. Heuck C, Weig A, Spohn M (2015) Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol Biochem 85:119–129. https://doi.org/10.1016/j.soilbio.2015.02.029

    Article  CAS  Google Scholar 

  91. Chen Y, Sun R, Sun T, Chen P, Yu Z, Ding L, Jiang Y, Wang X, Dai C, Sun B (2020) Evidence for involvement of keystone fungal taxa in organic phosphorus mineralization in subtropical soil and the impact of labile carbon. Soil Biol Biochem 148:107900. https://doi.org/10.1016/j.soilbio.2020.107900

    Article  CAS  Google Scholar 

  92. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. https://doi.org/10.1073/pnas.0507535103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shi Y, Li Y, Xiang X, Sun R, Yang T, He D, Zhang K, Ni Y, Zhu Y-G, Adams JM (2018) Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6:1–12. https://doi.org/10.1186/s40168-018-0409-4

    Article  CAS  Google Scholar 

  94. Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank International Science Editing (https://www.internationalscienceediting.com) for editing this manuscript.

Code Availability

This study does not include any software application or custom code.

Funding

This study was financially supported by the Natural Science Foundation of Jiangsu Province (BK20190259), the earmarked fund for CARS-10-Sweetpotato, the Key Research and Development Project of Jiangsu Province (BE2021378), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)1009), and “1+1+N” Innovative Agricultural Technology Extension Project of Zhenjiang (ZJNJ[2021]04).

Author information

Authors and Affiliations

Authors

Contributions

Lei Wang: methodology, investigation, data analysis, and writing—original draft preparation and editing. Jing Wang and Jie Yuan: collecting samples, performing experiments, and editing manuscript. Zhonghou Tang: experiment design, investigation, and review and editing. Jidong Wang and Yongchun Zhang: investigation, funding support, supervision, and editing manuscript.

Corresponding authors

Correspondence to Jidong Wang or Yongchun Zhang.

Ethics declarations

Ethics Approval

This study does not involve human participants, their data or biological material. This study does not involve animals, their data, or biological material.

Consent to Participate

This study does not involve human participants, their data, or biological material.

Consent for Publication

This study does not involve human participants, their data, or biological material.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

Fig. S1 Proportions of organic P and each inorganic P fractions for different fertilization regimes. CK, no fertilizer; NK, inorganic NK fertilizer; NP, inorganic NP fertilizer; NPK, inorganic NPK fertilizer; M, organic fertilizer; NPKM, inorganic NPK plus organic fertilizer. (PNG 46 kb)

ESM 2

Fig. S2 Pearson’s correlation among soil P fractions and Olsen-P (A). Random forest analysis to identify the relative effects of soil P fractions on Olsen-P (B). (PNG 307 kb)

ESM 3

Fig. S3 Principal coordinate analysis based on Bray–Curtis distance was used to investigate the community structure of pqqC- and phoD-harboring bacteria in different fertilization treatments (A). Hierarchical clustering based on unweighted Unifrac distance to explore the community structure of pqqC- and phoD-harboring bacteria in soil under different fertilization treatments (B). CK, no fertilizer; NK, inorganic NK fertilizer; NP, inorganic NP fertilizer; NPK, inorganic NPK fertilizer; M, organic fertilizer; NPKM, inorganic NPK plus organic fertilizer. (PNG 608 kb)

ESM 4

Fig. S4 Structure equation model of the phoD-harboring bacteria genera and labile Po (A) or ALP (B) under the influence of soil Po. Structure equation model of the pqqC-harboring bacteria genera and labile Pi under the influence of SOC (C). Po, Organic P; ALP, Alkaline phosphomonoesterase; SOC, Soil organic carbon. (PNG 716 kb)

ESM 5

Fig. S5 Effects of different long-term fertilization treatments on sweetpotato yield. Different letters indicate significant difference at P < 0.05. CK, no fertilization; NK, mineral NK fertilizer; NP, mineral NP fertilizer; NPK, mineral NPK fertilizer; M, sole organic fertilizer; NPKM, organic fertilizer plus mineral NPK fertilizer. (PNG 51 kb)

ESM 6

Table S1 Inorganic and organic fertilizer application rates in different long-term fertilization regimes (DOC 37 kb)

ESM 7

Table S2 Pearson’s correlation coefficients among soil physicochemical, the pqqC- and phoD-harboring bacterial community diversity (DOC 35 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, J., Yuan, J. et al. Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities. Microb Ecol 86, 2716–2732 (2023). https://doi.org/10.1007/s00248-023-02279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02279-7

Keywords

Navigation