Skip to main content
Log in

Does Epichloë Endophyte Enhance Host Tolerance to Root Hemiparasite?

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Epichloë endophytes have been shown to be mutualistic symbionts of cool-season grasses under most environmental conditions. Although pairwise interactions between hemiparasites and their hosts are heavily affected by host-associated symbiotic microorganisms, little attention has been paid to the effects of microbe–plant interactions, particularly endophytic symbiosis, in studies examining the effects of parasitic plants on host performance. In this study, we performed a greenhouse experiment to examine the effects of hereditary Epichloë endophyte symbiosis on the growth of two host grasses (Stipa purpurea and Elymus tangutorum) in the presence or absence of a facultative root hemiparasite (Pedicularis kansuensis Maxim). We observed parasitism of both hosts by P. kansuensis: when grown with a host plant, the hemiparasite decreased the performance of the host while improving its own biomass and survival rate of the hemiparasite. Parasitized endophyte-infected S. purpurea plants had higher biomass, tillers, root:shoot ratio, and photosynthetic parameters and a lower number of functional haustoria than the endophyte-free S. purpurea conspecifics. By contrast, parasitized endophyte-infected E. tangutorum had a lower biomass, root:shoot ratio, and photosynthetic parameters and a higher number of haustoria and functional haustoria than their endophyte-free counterparts. Our results reveal that the interactions between the endophytes and the host grasses are context dependent and that plant–plant interactions can strongly affect their mutualistic interactions. Endophytes originating from S. purpurea alleviate the host biomass reduction by P. kansuensis and growth depression in the hemiparasite. These findings shed new light on using grass–endophyte symbionts as biocontrol methods for the effective and sustainable management of this weedy hemiparasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  PubMed  Google Scholar 

  2. Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81

    Article  CAS  PubMed  Google Scholar 

  3. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  4. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  5. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  6. Leuchtmann A, Bacon CW, Schardl CL, White Jr JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215

    Article  CAS  PubMed  Google Scholar 

  7. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  8. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  9. Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  PubMed  Google Scholar 

  10. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte–grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  11. Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948

    Article  CAS  PubMed  Google Scholar 

  12. Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  13. Kauppinen M, Saikkonen K, Helander M, Pirttilä AM, Wäli PR (2016) Epichloë grass endophytes in sustainable agriculture. Nat Plants 2:15224

    Article  PubMed  Google Scholar 

  14. Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Lett 8:1256–1263

    Article  Google Scholar 

  15. Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  16. Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  17. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  18. Saari S, Faeth SH (2012) Hybridization of Neotyphodium endophytes enhances competitive ability of the host grass. New Phytol 195:231–236

  19. Afkhami ME, McIntyre PJ, Strauss SY (2014) Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol Lett 17:1265–1273

    Article  PubMed  Google Scholar 

  20. Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, Oxford

    Book  Google Scholar 

  21. Jia T, Oberhofer M, Shymanovich T, Faeth SH (2016) Effects of hybrid and non-hybrid Epichloë endophytes and their associated host genotypes on the response of a native grass to varying environments. Microb Ecol 72:185–196

    Article  PubMed  Google Scholar 

  22. Faeth SH, Hamilton CE (2006) Does an asexual endophyte symbiont alter life stage and long-term survival in a perennial host grass? Microb Ecol 52:748–755

    Article  PubMed  Google Scholar 

  23. Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  24. Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313

    Article  Google Scholar 

  25. Saona NM, Albrectsen BR, Ericson L, Bazely DR (2010) Environmental stresses mediate endophyte–grass interactions in a boreal archipelago. J Ecol 98:470–479

    Article  Google Scholar 

  26. Laitinen RK, Hellström KO, Wäli PR (2016) Context-dependent outcomes of subarctic grass-endophyte symbiosis. Fungal Ecol 23:66–74

    Article  Google Scholar 

  27. Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972

    Article  CAS  PubMed  Google Scholar 

  28. Phoenix GK, Press MC (2005) Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J Ecol 93:67–78

    Article  Google Scholar 

  29. Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751

    Article  PubMed  Google Scholar 

  30. Quested HM (2008) Parasitic plants-impacts on nutrient cycling. Plant Soil 311:269–272

    Article  CAS  Google Scholar 

  31. Těšitel J, Plavcová L, Duncan DD (2010) Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer. Plant Signal Behav 5:1072–1076

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cameron DD, Geniez JM, Seel WE, Irving LJ (2008) Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann Bot 101:573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshida S, Cui SK, Ichihashi Y, Shirasu K (2016) The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667

    Article  CAS  PubMed  Google Scholar 

  34. Těšitel J, Mládek J, Horník J, Těšitelová T, Adamec V, Tichý L (2017) Suppressing competitive dominants and community restoration with native parasitic plants using the hemiparasitic Rhinanthus alectorolophus and the dominant grass Calamagrostis epigejos. J Appl Ecol 54:1487–1495

    Article  Google Scholar 

  35. Cameron DD, Coats AM, Seel WE (2006) Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Ann Bot 98:1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bao GS, Suetsugu K, Wang HS, Yao X, Liu L, Ou J, Li CJ (2015b) Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland. Ecol Res 30:507–515

    Article  Google Scholar 

  37. Cameron DD, Seel WE (2007) Functional anatomy of haustoria formed by Rhinanthus minor: linking evidence from histology and isotope tracing. New Phytol 174:412–419

    Article  CAS  PubMed  Google Scholar 

  38. Matthies D (1996) Interactions between the root hemiparasite Melampyrum arvense and mixtures of host plants: heterotrophic benefit and parasite-mediated competition. Oikos 75:118–124

    Article  Google Scholar 

  39. Hautier Y, Hector A, Vojtech E, Purves D, Turnbull LA (2010) Modelling the growth of parasitic plants. J Ecol 98:857–866

    Article  Google Scholar 

  40. Decleer K, Bonte D, Van Diggelen R (2013) The hemiparasite Pedicularis palustris: ‘ecosystem engineer’ for fen-meadow restoration. J Nat Conserv 21:65–71

    Article  Google Scholar 

  41. Pennings SC, Callaway RM (2002) Parasitic plants: parallels and contrasts with herbivores. Oecologia 131:479–489

    Article  PubMed  Google Scholar 

  42. Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5

    Article  Google Scholar 

  43. Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate-and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65:497–503

    Article  CAS  PubMed  Google Scholar 

  44. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  CAS  Google Scholar 

  45. Sui XL, Zhang T, Tian YQ, Xue RJ, Li AR (2019) A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytol 221:470–481

    Article  PubMed  Google Scholar 

  46. Liu YY, Taxipulati T, Gong YM, Sui XL, Wang XZ, Parent SÉ, Hu YY, Guan KY, Li AR (2017) NP fertilization inhibits growth of root hemiparasite Pedicularis kansuensis in natural grassland. Front Plant Sci 8:2088

  47. Bao GS, Saikkonen K, Wang HS, Zhou LY, Chen SH, Li CJ, Nan ZB (2015a) Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland? Fungal Ecol 17:114–125

    Article  Google Scholar 

  48. Bao GS, Li CJ (2016) Isolation and identification endophytes infecting Stipa purpurea, a dominant grass in meadows of the Qinghai-Tibet Plateau. Acta Pratacul Sin 25:32–42 (in Chinese with English abstract)

    Google Scholar 

  49. Faeth SH (2009) Asexual fungal symbionts alter reproductive allocation and herbivory over time in their native perennial grass hosts. Am Nat 173:554–565

    Article  PubMed  Google Scholar 

  50. Gagic M, Faville MJ, Zhang W, Forester NT, Rolston MP, Johnson RD, Ganesh S, Koolaard JP, Easton HS, Hudson D, Johnson LJ, Moon CD, Voisey CR (2018) Seed transmission of Epichloë endophytes in Lolium perenne is heavily influenced by host genetics. Front Plant Sci 9:1580

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pan JJ, Clay K (2003) Infection by the systemic fungus Epichloë glyceriae alters clonal growth of its grass host, Glyceria striata. Proc R Soc Lond 270:1585–1591

    Article  Google Scholar 

  52. White Jr JF, Cole GT (1986) Endophyte-host associations in forage grasses. IV. The endophyte of Festuca versuta. Mycologia 78:102–107

    Article  Google Scholar 

  53. Song H, Nan ZB (2015) Origin, divergence, and phylogeny of asexual Epichloë endophyte in Elymus species from western China. PLoS One 10:e0127096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gundel PE, Martínez-Ghersa MA, Ghersa CM (2012) Threshold modelling Lolium multiflorum seed germination: effects of Neotyphodium endophyte infection and storage environment. Seed Sci Technol 40:51–62

    Article  Google Scholar 

  55. Li AR, Li YJ, Smith SE, Smith FA, Guan KY (2013) Nutrient requirements differ in two Pedicularis species in the absence of a host plant: implication for driving forces in the evolution of host preference of root hemiparasitic plants. Ann Bot 112:1099–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sui XL, Li AR, Chen Y, Guan KY, Zhuo L, Liu YY (2014) Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Mycorrhiza 24:187–195

    Article  PubMed  Google Scholar 

  57. Li AR, Guan KY (2008) Arbuscular mycorrhizal fungi may serve as another nutrient strategy for some hemiparasitic species of Pedicularis (Orobanchaceae). Mycorrhiza 18:429–436

    Article  CAS  PubMed  Google Scholar 

  58. Jiang F, Jeschke WD, Hartung W, Cameron DD (2008) Does legume nitrogen fixation underpin host quality for the hemiparasitic plant Rhinanthus minor? J Exp Bot 59:917–925

    Article  CAS  PubMed  Google Scholar 

  59. Xiang L, Li YM, Sui XL, Li AR (2018) Fast and abundant in vitro spontaneous haustorium formation in root hemiparasitic plant Pedicularis kansuensis Maxim.(Orobanchaceae). Plant Diversity 40:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  61. Wootton JT (1993) Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. Am Nat 141:71–89

    Article  Google Scholar 

  62. Davies D, Graves J, Elias C, Williams P (1997) The impact of Rhinanthus spp. on sward productivity and composition: implications for the restoration of species-rich grasslands. Biol Conserv 82:87–93

    Article  Google Scholar 

  63. Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  64. Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D (1999) Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Article  CAS  PubMed  Google Scholar 

  65. Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci USA 95:8676–8680

  66. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  67. Morris WF (1996) Mutualism denied? Nectar-robbing bumble bees do not reduce female or male success of bluebells. Ecology 77:1451–1462

    Article  Google Scholar 

  68. Salonen V, Setälä H, Puustinen S (2000) The interplay between Pinus sylvestris, its root hemiparasite, Melampyrum pratense, and ectomycorrhizal fungi: influences on plant growth and reproduction. Ecoscience 7:195–200

    Article  Google Scholar 

  69. Salonen V, Vestberg M, Vauhkonen M (2001) The effect of host mycorrhizal status on host plant–parasitic plant interactions. Mycorrhiza 11:95–100

    Article  Google Scholar 

  70. Těšitel J, Těšitelová T, Fisher JP, Lepš J, Cameron DD (2015) Integrating ecology and physiology of root-hemiparasitic interaction: interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytol 205:350–360

    Article  PubMed  Google Scholar 

  71. Sui XL, Huang W, Li YJ, Guan KY, Li AR (2015) Host shoot clipping depresses the growth of weedy hemiparasitic Pedicularis kansuensis. J Plant Res 128:563–572

    Article  PubMed  Google Scholar 

  72. Watling J, Press M (2001) Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol 3:244–250

    Article  CAS  Google Scholar 

  73. Frost D, Gurney A, Press M, Scholes J (1997) Striga hermonthica reduces photosynthesis in sorghum: the importance of stomatal limitations and a potential role for ABA? Plant Cell Environ 20:483–492

    Article  CAS  Google Scholar 

  74. Gurney AL, Press MC, Ransom JK (1995) The parasitic angiosperm Striga hermonthica can reduce photosynthesis of its sorghum and maize hosts in the field. J Exp Bot 46:1817–1823

    Article  CAS  Google Scholar 

  75. Runyon JB, Mescher MC, De Moraes CM (2010) Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens. Plant Signal Behav 5:929–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghestem M, Veylon G, Bernard A, Vanel Q, Stokes A (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377:43–61

    Article  CAS  Google Scholar 

  77. Hong JT, Ma XX, Yan Y, Zhang XK, Wang XD (2018) Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau? Plant Soil 424:63–72

    Article  CAS  Google Scholar 

  78. Zhu JT, Jiang L, Zhang YJ, Jiang YB, Tao J, Tian L, Zhang T, Xi Y (2015) Below-ground competition drives the self-thinning process of Stipa purpurea populations in northern Tibet. J Veg Sci 26:166–174

    Article  Google Scholar 

  79. Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60

    Article  CAS  Google Scholar 

  80. Wang ZY, Hou J, Qu ZQ, Guo JY, Li JR (2017b) Root distribution of 430 plants in temperate grassland of northern China. Appl Ecol Environ Res 15:1625–1651

    Article  Google Scholar 

  81. Wang JJ, Zhou YP, Lin WH, Li MM, Wang MN, Wang ZG, Kuang Y, Tian P (2017a) Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecol 30:39–47

    Article  Google Scholar 

  82. Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol 21:107–124

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Hongsheng Wang and Associate Professor Yali Yin for their constructive comments on the manuscript and Ph.D. students Xiang Yao and Shuihong Chen for providing some technical support.

Funding

This research was financially supported by the National Basic Research Program of China (2014CB138702), the Natural Science Foundation of China (Grants 31660690 and 31700098), the Program for Qinghai Province Thousand Talent Innovative Plan, the Key Laboratory ofSuperior Forage Germplasm in the Qinghai Tibetan Plateau (2017-ZJY12) and Academy of Finland (Grants 295976 and 326226).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, G., Song, M., Wang, Y. et al. Does Epichloë Endophyte Enhance Host Tolerance to Root Hemiparasite?. Microb Ecol 82, 35–48 (2021). https://doi.org/10.1007/s00248-020-01496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01496-8

Keywords

Navigation