Skip to main content
Log in

Host genotype overrides endophyte infection effects on growth, physiology, and nutrient content of a native grass, Achnatherum sibiricum

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The effect of infection by the fungal endophyte Neotyphodium, host genotype, and their interaction on growth and physiology, as well as photosynthesis, was investigated in the native grass Achnatherum sibiricum. We artificially inoculated the endophyte into mature tillers of endophyte-free A. sibiricum. Plants were clipped to 5 cm height after recording growth traits, and analyzed for total nonstructural carbohydrates (TNC %), the percentage of nitrogen (N %), and carbon (C %) in leaves before and after clipping. In our study, the prominent host genotype–endophyte infection interactions detected in A. sibiricum indicates that, for many growth and storage traits, endophyte infection can impact a little change. However, there is no overriding consistently positive effect of the endophyte on growth or storage in A. sibiricum before or after clipping. Our study showed that the interaction between endophyte and host grasses was highly contingent on plant genotypes. We found host genotype overrode fungal endophyte infection in influencing tiller number and photosynthetic properties of A. sibiricum before clipping. After clipping, host genotype accounted for more of the variation in regrowth and above-ground biomass of A. sibiricum than endophyte infection. Our study showed that host genotype affected the total nonstructural carbohydrates of A. sibiricum before and after clipping, whereas endophyte infection increased the carbon content after clipping. Genotype by infection interactions for plant height, leaf mass, total nonstructural carbohydrates, and photosynthetic characteristics indicated genotype-specific effects of endophytes on A. sibiricum physiology and photosynthetic capacity. The host genotype–endophyte infection interactions detected in A. sibiricum suggest that host genotype overrides fungal endophyte infection on growth, physiology, and nutrient content of this native grass. In contrast, endophyte effects did not appear to positively affect growth, physiology, or photosynthetic capacity before or after clipping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amalric C, Sallanon H, Monnet F, Hitmi A, Coudret A (1999) Gas exchange and chlorophyll fluorescence in symbiotic and non-symbiotic ryegrass under water stress. Photosynthetica 37:107–112

    Article  Google Scholar 

  • Belesky DP, Fedders JM (1996) Does endophyte influence regrowth of tall fescue? Ann Bot 78:499–505

    Article  Google Scholar 

  • Belesky DP, Devine OJ, Pallas JE, Stringer WC (1987) Photosynthetic activity of tall fescue as influenced by a fungal endophyte. Photosynthetica 21:82–87

    Google Scholar 

  • Bony S, Pichon N, Ravel C, Durix A, Balfourier F, Guillaumin J-J (2001) The relationship between mycotoxin synthesis and isolate morphology in fungal endophytes of Lolium perenne. New Phytol 152:125–137

    Article  CAS  Google Scholar 

  • Brem D, Leuchtmann A (2001) Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126:522–530

    Article  Google Scholar 

  • Bruehl GW, Kaiser WJ, Klein RE (1994) An endophyte of Achnatherum inebrians, an intoxicating grass of Northwest China. Mycologia 86:773–776

    Article  Google Scholar 

  • Chen LP, Zhao NX, Zhang LH, Gao YB (2013) Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecol 214:221–229

    Article  Google Scholar 

  • Cheplick GP (1997) Effects of endophytic fungi on the phenotypic plasticity of Lolium perenne (Poaceae). Am J Bot 84:34–40

    Article  Google Scholar 

  • Cheplick GP (1998) Genotypic variation in the regrowth of Lolium perenne following clipping: effects of nutrients and endophytic fungi. Funct Ecol 12:176–184

    Article  Google Scholar 

  • Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental? Am J Bot 91:1960–1968

    Article  PubMed  Google Scholar 

  • Cheplick GP (2008) Host genotype overrides fungal endophyte infection in influencing tiller and spike production of Lolium perenne (Poaceae) in a common garden experiment. Am J Bot 95:1063–1071

    Article  PubMed  Google Scholar 

  • Cheplick GP, Cho R (2003) Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol 158:183–191

    Article  Google Scholar 

  • Cheplick GP, Chui T (2001) Effects of competitive stress on vegetative growth, storage, and regrowth after defoliation in Phleum pratense. Oikos 95:291–299

    Article  Google Scholar 

  • Cheplick GP, Faeth S (2009) Ecology and evolution of the grass–endophyte symbiosis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cheplick GP, Perera A, Koulouris K (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14:657–667

    Article  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Clay K, Marks S, Cheplick GP (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74:1767–1777

    Article  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci USA 102:12465–12470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig S, Kannadan S, Flory SL, Seifert EK, Whitney KD, Rudgers JA (2011) Potential for endophyte symbiosis to increase resistance of the native grass Poa alsodes to invasion by the non-native grass Microstegium vimineum. Symbiosis 53:17–28

    Article  Google Scholar 

  • Da Silveira AJ, Feitosa Teles FF, Stull JW (1978) A rapid technique for total nonstructural carbohydrate determination of plant tissue. J Agric Food Chem 26:770–772

    Article  Google Scholar 

  • Danckwerts JE (1993) Reserve carbon and photosynthesis—their role in regrowth of Themeda triandra, a widely distributed subtropical gramineous species. Funct Ecol 7:634–641

    Article  Google Scholar 

  • Danckwerts JE, Gordon AJ (1987) Long-term partitioning, storage and re-mobilization of C-14 assimilated by Lolium perenne (Cv-Melle). Ann Bot 59:55–66

    CAS  Google Scholar 

  • De Visser R, Vianden H, Schnyder H (1997) Kinetics and relative significance of remobilized and current C and N incorporation in leaf and root growth zones of Lolium perenne after defoliation: assessment by 13C and 15N steady-state labelling. Plant Cell Environ 20:37–46

    Article  Google Scholar 

  • Donaghy DJ, Fulkerson WJ (1997) The importance of water-soluble carbohydrate reserves on regrowth and root growth of Lolium perenne (L.). Grass Forage Sci 52:401–407

    Article  CAS  Google Scholar 

  • Donaghy DJ, Fulkerson WJ (1998) Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne. Grass Forage Sci 53:211–218

    Article  Google Scholar 

  • Elbersen HW, West CP (1996) Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci 51:333–342

    Article  Google Scholar 

  • Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Article  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  • Faeth S, Bush L, Sullivan T (2002a) Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: effects of endophyte and host genotype and environment. J Chem Ecol 28:1511–1526

    Article  CAS  PubMed  Google Scholar 

  • Faeth SH, Haase SM, Sackett SS, Sullivan TJ, Remington RK, Hamilton CE (2002b) Does fire maintain symbiotic, fungal endophyte infections in native grasses? Symbiosis 32:211–228

    Google Scholar 

  • Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol Lett 7:304–313

    Article  Google Scholar 

  • Ferraro DO, Oesterheld M (2002) Effect of defoliation on grass growth. A quantitative review. Oikos 98:125–133

    Article  Google Scholar 

  • Gautier H, Varlet-Grancher C, Hazard L (1999) Tillering Responses to the light environment and to defoliation in populations of perennial ryegrass (Lolium perenne L.) selected for contrasting leaf length. Ann Bot 83:423–429

    Article  Google Scholar 

  • Hesse U, Hahn H, Andreeva K, Förster K, Warnstorff K, Schöberlein W, Diepenbrock W (2004) Investigations on the influence of Neotyphodium endophytes on plant growth and seed yield of Lolium perenne genotypes. Crop Sci 44:1689–1695

    Article  Google Scholar 

  • Hignight KW, Muilenburg GA, Vanwijk AJP (1993) A clearing technique for detecting the fungal endophyte Acremonium Sp in grasses. Biotech Histochem 68:87–90

    Article  CAS  PubMed  Google Scholar 

  • Iannone LJ, Cabral D (2006) Effects of the Neotyphodium endophyte status on plant performance of Bromus auleticus, a wild native grass from South America. Symbiosis 41:61–69

    Google Scholar 

  • Iannone LJ, Pinget AD, Nagabhyru P, Schardl CL, De Battista JP (2012) Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci 67:382–390

    Article  Google Scholar 

  • Johnson-Cicalese J, Secks ME, Lam CK, Meyer WA, Murphy JA, Belanger FC (2000) Cross species inoculation of chewings and strong creeping red fescues with fungal endophytes. Crop Sci 40:1485–1489

    Article  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713

    Article  Google Scholar 

  • Latch GCM, Hunt WF, Musgrave DR (1985) Endophytic fungi affect growth of perennial ryegrass. N Z J Agric Res 28:165–168

    Article  Google Scholar 

  • Lewis GC (2004) Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol 144:53–63

    Article  Google Scholar 

  • Li CJ, Gao JH, Nan ZB (2007) Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. Mycol Res 111:1220–1227

    Article  PubMed  Google Scholar 

  • Li X, Han R, Ren AZ, Gao YB (2010) Using high-temperature treatment to construct endophyte-free Achnatherum sibiricum. Microbiol China 37:1395–1400

    Google Scholar 

  • Lopez JE, Faeth SH, Miller M (1995) Effect of endophytic fungi on herbivory by redlegged grasshoppers (Orthoptera: Acrididae) on Arizona fescue. Environ Entomol 24:1576–1580

    Google Scholar 

  • Luxmoore R, Millington R (1971) Growth of perennial ryegrass (Lolium perenne L.) in relation to water, nitrogen, and light intensity. Plant Soil 34:561–574

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nösberger J (1997) Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agron J 89:833–839

    Article  Google Scholar 

  • Marks S, Clay K (1996) Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol 133:727–733

    Article  Google Scholar 

  • Marks S, Clay K, Cheplick GP (1991) Effects of fungal endophytes on interspecific and intraspecific competition in the grasses Festuca arundinacea and Lolium perenne. J Appl Ecol 28:194–204

    Article  Google Scholar 

  • McGee P, Hincksman M, White C (1991) Inhibition of growth of fungi isolated from plants by Acremonium strictum. Aust J Agric Res 42:1187–1193

    Article  Google Scholar 

  • Meijer G, Leuchtmann A (2000) The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloe sylvatica. Oikos 91:446–458

    Article  Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Morse LJ, Faeth SH, Day TA (2007) Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Funct Ecol 21:813–822

    Article  Google Scholar 

  • Morvan A, Challe G, Prud’Homme M-P, Le Saos J, Boucaud J (1997) Rise of fructan exohydrolase activity in stubble of Lolium perenne after defoliation is decreased by uniconazole, an inhibitor of the biosynthesis of gibberellins. New Phytol 136:81–88

    Article  CAS  Google Scholar 

  • Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  Google Scholar 

  • Neil KL, Tiller RL, Faeth SH (2003) Big sacaton and endophyte-infected Arizona fescue germination under water stress. J Range Manag 56:616–622

    Article  Google Scholar 

  • Newman JA, Abner ML, Dado RG, Gibson DJ, Brookings A, Parsons AJ (2003) Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Change Biol 9:425–437

    Article  Google Scholar 

  • Petroski RJ, Powell RG, Clay K (1992) Alkaloids of Stipa robusta (sleepygrass) infected with an Acremonium endophyte. Nat Toxins 1:84–88

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rice JS, Pinkerton BW, Stringer WC, Undersander DJ (1990) Seed production in tall fescue as affected by fungal endophyte. Crop Sci 30:1303–1305

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D (1999) Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Article  Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte–grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in planta endophyte concentration. Ann Bot 98:379–387

    Article  PubMed Central  PubMed  Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL, Bultman TL (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition. New Phytol 176:673–679

    Article  CAS  PubMed  Google Scholar 

  • Tibbets TM, Faeth SH (1999) Neotyphodium endophytes in grasses: deterrents or promoters of herbivory by leaf-cutting ants? Oecologia 118:297–305

    Article  Google Scholar 

  • Volenec JJ (1986) Nonstructural carbohydrates in stem base components of tall fescue during regrowth. Crop Sci 26:122–127

    Article  CAS  Google Scholar 

  • Wei YK, Gao YB, Xu H, Su D, Zhang X, Wang YH, Lin F, Chen L, Nie LY, Ren AZ (2006) Occurrence of endophytes in grasses native to northern China. Grass Forage Sci 61:422–429

    Article  Google Scholar 

  • Wei YK, Gao YB, Zhang X, Su D, Wang YH, Xu H, Lin F, Ren AZ, Chen L, Nie LY (2007) Distribution and diversity of Epichloe/Neotyphodium fungal endophytes from different populations of Achnatherum sibiricum (Poaceae) in the Inner Mongolia Steppe, China. Fungal Divers 24:329–345

    Google Scholar 

  • Welty RE, Azevedo MD, Cook KL (1986) Detecting viable Acremonium endophytes in leaf sheaths and meristems of tall fescue and perennial ryegrass. Plant Dis 70:431–435

    Article  Google Scholar 

  • Yue Q, Miller CJ, White JF, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ren AZ, Wei YK, Lin F, Li C, Liu ZJ, Gao YB (2009) Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiol Lett 301:12–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation (31270463) and the Doctoral Program Foundation of Institutions of Higher Education of China (20130031110023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bao Gao.

Additional information

Communicated by Lori Biederman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Ren, AZ. & Gao, YB. Host genotype overrides endophyte infection effects on growth, physiology, and nutrient content of a native grass, Achnatherum sibiricum . Plant Ecol 215, 875–887 (2014). https://doi.org/10.1007/s11258-014-0339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0339-6

Keywords

Navigation