Skip to main content
Log in

Complex Microsatellite Dynamics in the Myostatin Gene Within Ruminants

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A microsatellite has previously been identified in myostatin in cattle. Sequencing of this region from other artiodactyls coupled with phylogenetic analysis has been used to uncover the potential origins of the microsatellite event, which appears either to have been born twice or to have been gained and lost within ruminants. While caprids and ovids share the ancestral state with pigs and other mammals, microsatellite activity (length polymorphism) is uncovered in both deer and bovids. The dynamic process of microsatellite evolution, including birth, is discussed here in light of several models. Finally, these models are evaluated in the context of patterns of microsatellite conservation between closely related mammalian genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA (2005) Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutatgenesis and the role of local DNA sequence complexity. Hum Mutat 26:205–213

    Article  PubMed  CAS  Google Scholar 

  • Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, Dawson VL, Dawson TM (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci USA 93:5037–5042

    Article  PubMed  CAS  Google Scholar 

  • Bellinge RHS, Liberles DA, Iaschi SPA, O’Brien PA, Tay GK (2005) Myostatin and its implications on animal breeding—a review. Anim Genet 36:1–6

    Article  PubMed  CAS  Google Scholar 

  • Bolshoy A, McNamara P, Harrington RE, Trifonov EN (1991) Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci USA 88:2312–2316

    Article  PubMed  CAS  Google Scholar 

  • Brohede J, Ellegren H (1999) Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences. Proc Biol Sci 266:825–833

    Article  PubMed  CAS  Google Scholar 

  • Buschiazoo E, Gemmell NJ (2006) The rise, fall, and renaissance of microsatellites in eukaryotic genomes. Bioessays 28:1040–1050

    Article  Google Scholar 

  • De la Rosa-Reyna XF, Rodriguez Perez MA, Sifuentes-Rincon AM (2006) Microsatellite polymorphism in intron 1 of the bovine myostatin gene. J Appl Genet 47:55–57

    Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Rev Genet 5:435–445

    Article  CAS  Google Scholar 

  • Garza JC, Slatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol 12:594–603

    PubMed  CAS  Google Scholar 

  • Goldstein DB, Clark AG (1995) Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Res 23:3882–3886

    Article  PubMed  CAS  Google Scholar 

  • Gregory DJ, Waldbieser GC, Bosworth BG (2004) Cloning and characterization of myogenic regulatory genes in three ictalurid species. Anim Genet 35:425–430

    Article  PubMed  CAS  Google Scholar 

  • Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Douzery EJ (1999) The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 13:227–243

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Douzery EJ (2003) Molecular and morphological phylogenies of ruminantia and the alternative position of the moschidae. Syst Biol 52:206–228

    Article  PubMed  Google Scholar 

  • Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33:896–907

    Article  PubMed  CAS  Google Scholar 

  • Hentschel CC (1982) Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 295:714–716

    Article  PubMed  CAS  Google Scholar 

  • Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7:310–315

    Article  PubMed  CAS  Google Scholar 

  • Karolik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler D, Kent WJ (2002) The UCSC Genome Browser Database. Nucleic Acids Res 31:51–54

    Article  Google Scholar 

  • Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86

    Article  PubMed  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Li Y-C, Korol AB, Fahima R, Nevo E (2004) Microsatellites with genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  PubMed  CAS  Google Scholar 

  • MacDonald ME et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  PubMed  CAS  Google Scholar 

  • Messier W, Li S-H, Stewart CB (1996) The birth of microsatellites. Nature 381:483

    Article  PubMed  CAS  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    CAS  Google Scholar 

  • Ota R, Penny D (2003) Estimating changes in mutational mechanisms of evolution. J Mol Evol 57(Suppl 1):S233–S240

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Primmer CR, Ellegren H (1998) Patterns of molecular evolution in avian microsatellites. Mol Biol Evol 15:997–1008

    PubMed  CAS  Google Scholar 

  • Pupko T, Graur D (1999) Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units. J Mol Evol 48:313–316

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rose O, Falush D (1998) A threshold size for microsatellite expansion. Mol Biol Evol 15:613–615

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Amos W, Leggo J, Goodburn S, Jain S, Li SH, Margolis RL, Ross CA, Ferguson-Smith MA (1995) Microsatellite evolution—evidence for directionality and variation in rate between species. Nat Genet 10:337–343

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure. Springer-Verlag, New York

    Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    Article  PubMed  CAS  Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276

    Article  PubMed  CAS  Google Scholar 

  • Streisinger G, Owen J (1985) Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics 109:633–659

    PubMed  CAS  Google Scholar 

  • Taylor JS, Durkin JMH, Breden F (1999) The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. Mol Biol Evol 16:567–572

    PubMed  CAS  Google Scholar 

  • Tellgren A, Berglund AC, Savolainen P, Janis CM, Liberles DA (2004) Myostatin rapid sequence evolution in ruminants predates domestication. Mol Phylogenet Evol 33:782–790

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wiener P, Burton D, Ajmone-Marsan P, Dunner S, Mommens G, Nijman IJ, Rodellar C, Valentini A, Williams JL (2003) Signatures of selection? Patterns of microsatellite diversity on a chromosome containing a selected locus. Heredity 90:350–358

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Qian K, Qian H, Li L, Yang Q, Li M (2006) Molecular cloning and characterization of the myostatin gene in croceine croaker, Pseudosciaena crocea. Mol Biol Rep 33:129–135

    Article  PubMed  CAS  Google Scholar 

  • Yoon C, Prive GG, Goodsell DS, Dickerson RE (1988) Structure of an alternating B-helix and its relationship to A-tract DNA. Proc Natl Acad Sci USA 85:6332–6336

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Queller DC, Strassmann JE (2000) A phylogenetic perspective on sequence evolution in microsatellite loci. J Mol Evol 50:324–338

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Katharina Dittmar and Dietric Hennings for help with obtaining samples and with sequencing. We are grateful to Martin Kreitman, Alex Buerkle, and two anonymous reviewers for helpful discussions. We thank the Center for the Reproduction of Endangered Species at the San Diego Zoo, Kim Sargeant at the Wyoming Fish and Game Wildlife Forensics Laboratory, The Field Museum, University of Alaska-Fairbanks Museum of the North, El Mañana Serengueti, Alfonso Ortega, Alejandro Sánchez, Ing Raul Cabrera, Victoria Garza, Manuel Parra, and the Tamatan Zoo for providing us with some DNA samples. In particular, the whale sample is sample no. UAM24066 from the mammal collection of the University of Alaska-Fairbanks Museum of the North, on loan to Katharina Dittmar of the Liberles Lab. This sample was collected on August 18, 1992, in Nazan Bay, Village of Atka, by Patrick B. Holmes, Moses L. Dirks, and Sylvia Brunner. This work was funded by FUGE, the Norwegian Functional Genomics Research Council, INBRE, and University of Wyoming startup funds to David Liberles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Liberles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellgren-Roth, Å., Kolesov, G., Sifuentes-Rincón, A.M. et al. Complex Microsatellite Dynamics in the Myostatin Gene Within Ruminants. J Mol Evol 66, 258–265 (2008). https://doi.org/10.1007/s00239-008-9080-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9080-x

Keywords

Navigation