Skip to main content
Log in

Estimating Changes in Mutational Mechanisms of Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

By considering three DNA sequences simultaneously there is sufficient information to recover a full Markov model with three transition matrices from the root to each of the sequences. It is necessary to have relatively long sequences because, for nucleotides, the full model requires 39 parameters that are estimated from 63 observable values. This triplet Markov method is evaluated for the protein coding genes of mammalian vertebrate mitochondrial genomes, and, in addition, version for two-statecharacters (such as R/Y coding) is implemented. A key finding is that some changes in mutational mechanism differentially affect the mutation rate between pairs of nucleotides; there does not appear to be a universal change in “rate” of evolution. It remains to be explored whether detecting changes in certain nucleotide interchanges can be localized to a particular part of the DNA replication/repair system. In order to estimate divergence dates it may eventually be advantageous to use the nucleotide interchanges that show little rate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JH Bielas JA Heddle (2000) ArticleTitleProliferation is necessary for both repair and mutation in transgenic mouse cells. Proc Natl Acad Sci USA 97 11391–11396 Occurrence Handle10.1073/pnas.190330997 Occurrence Handle1:CAS:528:DC%2BD3cXnsF2ru7Y%3D Occurrence Handle11005832

    Article  CAS  PubMed  Google Scholar 

  2. LD Bromham A Rambaut PH Harvey (1996) ArticleTitleDeterminant of rate variation in mammalian DNA sequence evolution. J Mol Evol 43 610–621 Occurrence Handle1:CAS:528:DyaK2sXislKjtg%3D%3D Occurrence Handle8995058

    CAS  PubMed  Google Scholar 

  3. TR Buckley (2002) ArticleTitleModel misspecification and probabilistic tests of topology: Evidence from empirical data sets. Syst Biol 51 509–523 Occurrence Handle10.1080/10635150290069922 Occurrence Handle12079647

    Article  PubMed  Google Scholar 

  4. JT Chang (1996) ArticleTitleFull reconstruction of Markov models on evolutionary trees: Identifiability and consistency. Math Biosci 134 189–215 Occurrence Handle10.1016/0025-5564(95)00172-7 Occurrence Handle1:STN:280:BymB2M7mtFM%3D Occurrence Handle8664540

    Article  CAS  PubMed  Google Scholar 

  5. B Chor BR Holland D Penny MD Hendy (2000) ArticleTitleMultiple maxima of likelihood in phylogenetic trees: An analytic approach. Mol Biol Evol 17 1529–1541 Occurrence Handle1:CAS:528:DC%2BD3cXnt1Cnsbk%3D Occurrence Handle11018159

    CAS  PubMed  Google Scholar 

  6. GA Cortopassi E Wang (1996) ArticleTitleThere is substantial agreement among interspecies estimates of DNA repair activity. Mech Age Dev 91 211–218 Occurrence Handle10.1016/S0047-6374(96)01788-5 Occurrence Handle1:CAS:528:DyaK28XntlWitrk%3D

    Article  CAS  Google Scholar 

  7. L Duret LD Hurst (2002) ArticleTitleThe elevated GC content at exonic third sites is not evidence against neutralist models of isochore evolution. Mol Biol Evol 18 757–762

    Google Scholar 

  8. E Eizirik WJ Murphy SJ O’Brien (2001) ArticleTitleMolecular dating and biogeography of the early placental mammal radiation. J Hered 92 212–219 Occurrence Handle10.1093/jhered/92.2.212 Occurrence Handle1:STN:280:DC%2BD38%2Fht1Wrtw%3D%3D Occurrence Handle11396581

    Article  CAS  PubMed  Google Scholar 

  9. S Karlin J Mrázek (1997) ArticleTitleCompositional differences within and between eukaryotic genomes. Proc Natl Acad Sci USA 94 10227–10232 Occurrence Handle1:CAS:528:DyaK2sXmt1Gjs7o%3D Occurrence Handle9294192

    CAS  PubMed  Google Scholar 

  10. M Kimura (1983) The neutral theory of molecular evolution. Cambridge University Press Cambridge

    Google Scholar 

  11. JA Lake (1994) ArticleTitleReconstructing evolutionary trees from DNA and protein sequences: Paralinear distances. Proc Natl Acad Sci USA 91 1455–1459 Occurrence Handle1:CAS:528:DyaK2cXitFWqt7Y%3D Occurrence Handle8108430

    CAS  PubMed  Google Scholar 

  12. JA Lake (1997) ArticleTitlePhylogenetic inference: How much evolutionary history is knowable? Mol Biol Evol 14 213–219 Occurrence Handle1:CAS:528:DyaK2sXhs12jtb4%3D Occurrence Handle9066789

    CAS  PubMed  Google Scholar 

  13. Y-H Lin PA McLenachan AR Gore MJ Phillips R Ota MD Hendy D Penny (2002a) ArticleTitleFour new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol Biol Evol 19 2060–2070 Occurrence Handle1:CAS:528:DC%2BD38Xps12hsrg%3D

    CAS  Google Scholar 

  14. Y-H Lin PJ Waddell D Penny (2002b) ArticleTitlePika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene 294 119–129 Occurrence Handle1:CAS:528:DC%2BD38XmvF2qtro%3D

    CAS  Google Scholar 

  15. PJ Lockhart D Penny MD Hendy CJ Howe TJ Beanland AWD Larkum (1992) ArticleTitleControversy on chloroplast origins. FEBS Lett 301 127–131 Occurrence Handle10.1016/0014-5793(92)81231-A Occurrence Handle1:CAS:528:DyaK38XisFagtbY%3D Occurrence Handle1568469

    Article  CAS  PubMed  Google Scholar 

  16. PJ Lockhart MA Steel MD Hendy D Penny (1994) ArticleTitleRecovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11 605–612 Occurrence Handle1:CAS:528:DyaK2cXlsFaks7c%3D

    CAS  Google Scholar 

  17. MJ Longley D Nguyen TA Kunkel WC Copeland (2001) ArticleTitleThe fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276 38555–38562 Occurrence Handle1:CAS:528:DC%2BD3MXnvVentr4%3D Occurrence Handle11504725

    CAS  PubMed  Google Scholar 

  18. AP Martin (1999) ArticleTitleSubstitution rates of organelle and nuclear genes in sharks: Implicating metabolic rate (again). Mol Biol Evol 16 996–1002 Occurrence Handle1:CAS:528:DyaK1MXksFOlsLw%3D Occurrence Handle10406116

    CAS  PubMed  Google Scholar 

  19. CW Op het Veld S van Hees-Stuivenberg AA van Zeeland JG Jansen (1997) ArticleTitleEffect of nucleotides excision repair on hprt gene mutations in rodent cells exposed to DNA ethylating agents. Mutagenesis 12 417–424 Occurrence Handle1:STN:280:DyaK1c%2FnsVCktg%3D%3D Occurrence Handle9412994

    CAS  PubMed  Google Scholar 

  20. D Penny RP Murray-Mclntosh MD Hendy (1998) ArticleTitleEstimating the times of divergence with a change in rate: The orangutan/African ape divergence. Mol Biol Evol 15 608–610 Occurrence Handle1:CAS:528:DyaK1cXislensLs%3D Occurrence Handle9580991

    CAS  PubMed  Google Scholar 

  21. D Penny BJ McComish MA Charleston MD Hendy (2001) ArticleTitleMathematical elegance with biochemical realism: The covarion model of molecular evolution. J Mol Evol 53 711–723 Occurrence Handle10.1007/s002390010258 Occurrence Handle1:CAS:528:DC%2BD3MXnvFOlt7s%3D Occurrence Handle11677631

    Article  CAS  PubMed  Google Scholar 

  22. MJ Phillips D Penny (2003) ArticleTitleThe root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol . .

    Google Scholar 

  23. MJ Phillips Y-H Lin GL Harrison D Penny (2001) ArticleTitleMitochondrial genomes of a bandicoot and a brush-tail possum confirm the monophyly of australidelphian marsupials. Proc R Soc Lond Ser B 268 1533–1538 Occurrence Handle10.1098/rspb.2001.1677 Occurrence Handle1:CAS:528:DC%2BD3MXms1arsbo%3D

    Article  CAS  Google Scholar 

  24. A Reyes C Gissi G Pesole C Saccone (1998) ArticleTitleAsymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Evol Biol 15 957–966 Occurrence Handle1:CAS:528:DyaK1cXlt1ejsLk%3D

    CAS  Google Scholar 

  25. J Schmitz M Ohme H Zischler (2002) ArticleTitleThe complete mitochondrial genome of Tarsius bancanus: Evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19 544–553 Occurrence Handle11919296

    PubMed  Google Scholar 

  26. N Sueoka (1962) ArticleTitleOn the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48 582–592

    Google Scholar 

  27. DL Swofford GJ Olsen PJ Waddell DM Hillis (1996) Phylogenetic inference. DM Hillis C Moritz BK Mable (Eds) Molecular systematics, 2nd ed. Sinauer Associates Sunderland, MA 407–514

    Google Scholar 

  28. Z Yu J Chen BN Ford ME Brackley BW Glickman (1999) ArticleTitleHuman DNA repair systems: an overview. Environ Mol Mutag 33 3–20 Occurrence Handle10.1002/(SICI)1098-2280(1999)33:1<3::AID-EM2>3.0.CO;2-L Occurrence Handle1:CAS:528:DyaK1MXhtVegurw%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, R., Penny, D. Estimating Changes in Mutational Mechanisms of Evolution . J Mol Evol 57 (Suppl 1), S233–S240 (2003). https://doi.org/10.1007/s00239-003-0032-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-0032-1

Keywords

Navigation