Skip to main content
Log in

Vitamin K in CKD Bone Disorders

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vitamin K is principally known because it is involved in blood coagulation. Furthermore, epidemiological studies showed that its deficit was associated with increased fragility fractures, vascular calcification and mortality. There are two main types of vitamin K vitamers: Phylloquinone (or PK) and Menaquinones (MKn). Vitamin K acts both as coenzyme of y-glutamyl carboxylase (GGCX) transforming undercarboxylated in carboxylated vitamin K-dependent proteins (e.g., Osteocalcin and Matrix Gla Protein) and as a ligand of the nuclear steroid and xenobiotic receptor (SXR) (in murine species Pregnane X Receptor: PXR), expressed in osteoblasts. It has been highlighted that the uremic state is a condition of greater vitamin K deficiency than the general population with resulting higher prevalence of bone fractures, vascular calcifications and mortality. The purpose of this literature review is to evaluate the protective role of Vitamin K in bone health in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fusaro M, Crepaldi G, Maggi S et al (2011) Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: an important but poorly studied relationship. J Endocrinol Invest 34:317–323. https://doi.org/10.1007/bf03347093

    Article  CAS  PubMed  Google Scholar 

  2. Fusaro M, Mereu MC, Aghi A, et al. (2017) Vitamin K and bone. Clin Cases Miner Bone Metab.https://doi.org/10.11138/CCMBM/2017.14.1.200

  3. Booth SL, Suttie JW (1998) Dietary intake and adequacy of vitamin K. J Nutr 128:785–788. https://doi.org/10.1093/jn/128.5.785

    Article  CAS  PubMed  Google Scholar 

  4. Hamidi MS, Gajic-Veljanoski O, Cheung AM (2013) Vitamin K and bone health. J Clin Densitom 16:409–413. https://doi.org/10.1016/j.jocd.2013.08.017

    Article  PubMed  Google Scholar 

  5. Lacombe J, Rishavy MA, Berkner KL, Ferron M (2018) VKOR paralog VKORC1L1 supports vitamin K–dependent protein carboxylation in vivo. JCI Insight. https://doi.org/10.1172/JCI.INSIGHT.96501

    Article  PubMed  PubMed Central  Google Scholar 

  6. Azuma K, Ouchi Y, Inoue S (2014) Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int 14:1–7

    Article  Google Scholar 

  7. McCabe KM, Booth SL, Fu X et al (2017) Vitamin K metabolism in a rat model of chronic kidney disease. Am J Nephrol 45:4–13. https://doi.org/10.1159/000451068

    Article  CAS  PubMed  Google Scholar 

  8. Fusaro M, Gallieni M, Porta C et al (2020) Vitamin K effects in human health: new insights beyond bone and cardiovascular health. J Nephrol 33:239–249

    Article  Google Scholar 

  9. Caluwé R, Verbeke F, De Vriese AS (2020) Evaluation of vitamin K status and rationale for vitamin K supplementation in dialysis patients. Nephrol Dial Transplant 35:23–33. https://doi.org/10.1093/ndt/gfy373

    Article  CAS  PubMed  Google Scholar 

  10. Cozzolino M, Cianciolo G, Podestà MA et al (2020) Current therapy in CKD patients can affect vitamin K status. Nutrients 12:1609. https://doi.org/10.3390/nu12061609

    Article  CAS  PubMed Central  Google Scholar 

  11. Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702. https://doi.org/10.1210/er.2001-0038

    Article  CAS  PubMed  Google Scholar 

  12. Sato T, Inaba N, Yamashita T (2020) MK-7 and its effects on bone quality and strength. Nutrients 12:965. https://doi.org/10.3390/nu12040965

    Article  CAS  PubMed Central  Google Scholar 

  13. Hirota Y, Suhara Y (2019) New aspects of vitamin K research with synthetic ligands: transcriptional activity via SXR and neural differentiation activity. Int J Mol Sci 20:3006

    Article  CAS  Google Scholar 

  14. Tsugawa N, Shiraki M (2020) Vitamin K nutrition and bone health. Nutrients 12:1909. https://doi.org/10.3390/nu12071909

    Article  CAS  PubMed Central  Google Scholar 

  15. Kazama JJ, Iwasaki Y, Fukagawa M (2013) Uremic osteoporosis. Kidney Int Suppl 3:446–450

    Article  CAS  Google Scholar 

  16. Yamaguchi M, Weitzmann MN (2011) Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. Int J Mol Med 27:3–14. https://doi.org/10.3892/ijmm.2010.562

    Article  CAS  PubMed  Google Scholar 

  17. Wei F-F, Trenson S, Verhamme P et al (2019) Vitamin K–dependent matrix gla protein as multifaceted protector of vascular and tissue integrity. Hypertension 73:1160–1169. https://doi.org/10.1161/HYPERTENSIONAHA.119.12412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Price PA, Urist MR, Otawara Y (1983) Matrix Gla protein, a new γ-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun 117:765–771. https://doi.org/10.1016/0006-291X(83)91663-7

    Article  CAS  PubMed  Google Scholar 

  19. McKeown NM, Jacques PF, Gundberg CM et al (2002) Dietary and nondietary determinants of vitamin K biochemical measures in men and women. J Nutr 132:1329–1334. https://doi.org/10.1093/jn/132.6.1329

    Article  CAS  PubMed  Google Scholar 

  20. Booth SL, Lichtenstein AH, O’Brien-Morse M et al (2001) Effects of a hydrogenated form of vitamin K on bone formation and resorption. Am J Clin Nutr 74:783–790. https://doi.org/10.1093/ajcn/74.6.783

    Article  CAS  PubMed  Google Scholar 

  21. Ritter NM, Farach-Carson MC, Butler WT (2009) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7:877–885. https://doi.org/10.1002/jbmr.5650070804

    Article  Google Scholar 

  22. Hauschka PV, Carr SA (1982) Calcium-dependent α-helical structure in osteocalcin. Biochemistry 21:2538–2547. https://doi.org/10.1021/bi00539a038

    Article  CAS  PubMed  Google Scholar 

  23. Newman B, Gigout LI, Sudre L et al (2001) Coordinated expression of matrix Gla protein is required during endochondral ossification for chondrocyte survival. J Cell Biol 154:659–666. https://doi.org/10.1083/jcb.200106040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Julien M, Khoshniat S, Lacreusette A et al (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868. https://doi.org/10.1359/jbmr.090508

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Zhao L, Wang N et al (2019) Unexpected role of matrix gla protein in osteoclasts: inhibiting osteoclast differentiation and bone resorption. Mol Cell Biol. https://doi.org/10.1128/mcb.00012-19

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vassalle C, Mazzone A (2016) Bone loss and vascular calcification: a bi-directional interplay? Vascul Pharmacol 86:77–86

    Article  CAS  Google Scholar 

  27. Wajih N, Borras T, Xue W et al (2004) Processing and transport of matrix γ-carboxyglutamic acid protein and bone morphogenetic protein-2 in cultured human vascular smooth muscle cells: evidence for an uptake mechanism for serum fetuin. J Biol Chem 279:43052–43060. https://doi.org/10.1074/jbc.M407180200

    Article  CAS  PubMed  Google Scholar 

  28. Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630. https://doi.org/10.1083/jcb.200402046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fusaro M, Cosmai L, Evenepoel P et al (2020) Vitamin K and kidney transplantation. Nutrients 12:1–13

    Google Scholar 

  30. Schurgers LJ, Spronk HMH, Skepper JN et al (2007) Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J Thromb Haemost 5:2503–2511. https://doi.org/10.1111/j.1538-7836.2007.02758.x

    Article  CAS  PubMed  Google Scholar 

  31. Fusaro M, Noale M, Viola V et al (2012) Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J Bone Miner Res 27:2271–2278. https://doi.org/10.1002/jbmr.1677

    Article  CAS  PubMed  Google Scholar 

  32. Cozzolino M, Fusaro M, Ciceri P et al (2019) The role of vitamin K in vascular calcification. Adv Chronic Kidney Dis 26:437–444

    Article  Google Scholar 

  33. Fusaro M, D’Alessandro C, Noale M et al (2017) Low vitamin K1 intake in haemodialysis patients. Clin Nutr 36:601–607. https://doi.org/10.1016/j.clnu.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  34. Covic A, Vervloet M, Massy ZA et al (2018) Bone and mineral disorders in chronic kidney disease: implications for cardiovascular health and ageing in the general population. Lancet Diabetes Endocrinol 6:319–331

    Article  Google Scholar 

  35. Cianciolo G, Galassi A, Capelli I et al (2017) Klotho-FGF23, cardiovascular disease, and vascular calcification: black or white? Curr Vasc Pharmacol 16:143–156. https://doi.org/10.2174/1570161115666170310092202

    Article  CAS  Google Scholar 

  36. Cozzolino M, Ciceri P, Galassi A et al (2019) The key role of phosphate on vascular calcification. Toxins (Basel). 11:214

    Article  Google Scholar 

  37. Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88:235–240

    Article  CAS  Google Scholar 

  38. Cianciolo G, La Manna G, Capelli I et al (2020) The role of activin: the other side of chronic kidney disease–mineral bone disorder? Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfaa203

    Article  PubMed  Google Scholar 

  39. Schurgers LJ, Barreto DV, Barreto FC et al (2010) The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 5:568–575. https://doi.org/10.2215/CJN.07081009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westenfeld R, Krueger T, Schlieper G et al (2012) Effect of vitamin K 2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis 59:186–195. https://doi.org/10.1053/j.ajkd.2011.10.041

    Article  CAS  PubMed  Google Scholar 

  41. Holden RM, Iliescu E, Morton AR, Booth SL (2008) Vitamin K status of Canadian peritoneal dialysis patients. Perit Dial Int 28:415–418. https://doi.org/10.1177/089686080802800419

    Article  CAS  PubMed  Google Scholar 

  42. Uhlin F, Fernström A, Knapen MHJ et al (2019) Long-term follow-up of biomarkers of vascular calcification after switch from traditional hemodialysis to online hemodiafiltration. Scand J Clin Lab Invest 79:174–181. https://doi.org/10.1080/00365513.2019.1576218

    Article  CAS  PubMed  Google Scholar 

  43. Neradova A, Schumacher SP, Hubeek I et al (2017) Phosphate binders affect vitamin K concentration by undesired binding, an in vitro study. BMC Nephrol 18:149. https://doi.org/10.1186/s12882-017-0560-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fusaro M, Cozzolino M, Plebani M et al (2020) Sevelamer use, vitamin K levels, vascular calcifications and vertebral fractures in hemodialysis patients: results from the VIKI study. J Bone Miner Res JBMR. https://doi.org/10.1002/jbmr.4214

    Article  Google Scholar 

  45. Evenepoel P, Claes K, Meijers B et al (2019) Poor vitamin K status is associated with low bone mineral density and increased fracture risk in end-stage renal disease. J Bone Miner Res 34:262–269. https://doi.org/10.1002/jbmr.3608

    Article  CAS  PubMed  Google Scholar 

  46. Keyzer CA, Vermeer C, Joosten MM et al (2015) Vitamin K status and mortality after kidney transplantation: a cohort study. Am J Kidney Dis 65:474–483. https://doi.org/10.1053/j.ajkd.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  47. Groenen-Van Dooren MMCL, Ronden JE, Soute BAM, Vermeer C (1995) Bioavailability of phylloquinone and menaquinones after oral and colorectal administration in vitamin K-deficient rats. Biochem Pharmacol 50:797–801. https://doi.org/10.1016/0006-2952(95)00202-B

    Article  CAS  PubMed  Google Scholar 

  48. Komai M, Shirakawa H, Kimura S (1988) Newly developed model for vitamin K deficiency in germfree mice. Int J Vitam Nutr Res Int Zeitschrift fur Vitamin- und Ernahrungsforschung J Int Vitaminol Nutr 58:55–59

    CAS  Google Scholar 

  49. Allison PM, Mummah-Schendel LL, Kindberg CG et al (1987) Effects of a vitamin K-deficient diet and antibiotics in normal human volunteers. J Lab Clin Med 110:180–188. https://doi.org/10.5555/uri:pii:0022214387904288

    Article  CAS  PubMed  Google Scholar 

  50. Frick PG, Riedler G, Brögli H (1967) Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23:387–389. https://doi.org/10.1152/jappl.1967.23.3.387

    Article  CAS  PubMed  Google Scholar 

  51. Evenepoel P, Poesen R, Meijers B (2017) The gut–kidney axis. Pediatr Nephrol 32:2005–2014

    Article  Google Scholar 

  52. Poesen R, Windey K, Neven E et al (2016) The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol 27:1389–1399

    Article  CAS  Google Scholar 

  53. Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315. https://doi.org/10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  54. Holden RM, Morton AR, Garland JS et al (2010) Vitamins K and D status in stages 3–5 chronic kidney disease. Clin J Am Soc Nephrol 5:590–597. https://doi.org/10.2215/CJN.06420909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cranenburg ECM, Schurgers LJ, Uiterwijk HH et al (2012) Vitamin K intake and status are low in hemodialysis patients. Kidney Int 82:605–610. https://doi.org/10.1038/ki.2012.191

    Article  CAS  PubMed  Google Scholar 

  56. Jansz TT, Neradova A, van Ballegooijen AJ et al (2018) The role of kidney transplantation and phosphate binder use in vitamin K status. PLoS ONE 13:e0203157. https://doi.org/10.1371/journal.pone.0203157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaesler N, Magdeleyns E, Herfs M et al (2014) Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation. Kidney Int 86:286–293. https://doi.org/10.1038/ki.2013.530

    Article  CAS  PubMed  Google Scholar 

  58. Weaver CM (2015) Diet, gut microbiome, and bone health. Curr Osteoporos Rep 13:125–130

    Article  Google Scholar 

  59. Hernandez CJ, Guss JD, Luna M, Goldring SR (2016) Links between the microbiome and bone. J Bone Miner Res 31:1638–1646

    Article  Google Scholar 

  60. Zaiss MM, Jones RM, Schett G, Pacifici R (2019) The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 129:3018–3028

    Article  Google Scholar 

  61. Evenepoel P, Dejongh S, Verbeke K, Meijers B (2020) The role of gut dysbiosis in the bone-vascular axis in chronic kidney disease. Toxins (Basel) 12(5):285. https://doi.org/10.3390/toxins12050285

  62. Yan J, Charles JF (2017) Gut microbiome and bone: to build, destroy, or both? Curr Osteoporos Rep 15:376–384

    Article  Google Scholar 

  63. Ohlsson C, Sjögren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26:69–74

    Article  CAS  Google Scholar 

  64. Lucas S, Omata Y, Hofmann J et al (2018) Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 9:1–10. https://doi.org/10.1038/s41467-017-02490-4

    Article  CAS  Google Scholar 

  65. Guss JD, Taylor E, Rouse Z et al (2019) The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength. Bone 127:146–154. https://doi.org/10.1016/j.bone.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schurgers LJ, Spronk HMH (2014) Differential cellular effects of old and new oral anticoagulants: consequences to the genesis and progression of atherosclerosis. Thromb Haemost 112:909–917. https://doi.org/10.1160/TH14-03-0268

    Article  PubMed  Google Scholar 

  67. Shearer MJ (2000) Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Metab Care 3:433–438

    Article  CAS  Google Scholar 

  68. Pastoureau P, Vergnaud P, Meunier PJ, Delmas PD (1993) Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. J Bone Miner Res 8:1417–1426. https://doi.org/10.1002/jbmr.5650081202

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen ND, Center JR, Eisman JA, Nguyen TV (2007) Bone loss, weight loss, and weight fluctuation predict mortality risk in elderly men and women. J Bone Miner Res 22:1147–1154. https://doi.org/10.1359/jbmr.070412

    Article  PubMed  Google Scholar 

  70. Hylek EM (2016) Antithrombotic drug use: scientific breakthroughs, biological limits and physician behaviour. Heart 102:1859–1860

    Article  Google Scholar 

  71. Fusaro M, Tripepi G, Noale M et al (2015) Prevalence of vertebral fractures, vascular calcifications, and mortality in warfarin treated hemodialysis patients. Curr Vasc Pharmacol 13:248–258. https://doi.org/10.2174/15701611113119990146

    Article  CAS  PubMed  Google Scholar 

  72. Binding C, Bjerring Olesen J, Abrahamsen B et al (2019) Osteoporotic fractures in patients with atrial fibrillation treated with conventional versus direct anticoagulants. J Am Coll Cardiol 74:2150–2158. https://doi.org/10.1016/j.jacc.2019.08.1025

    Article  CAS  PubMed  Google Scholar 

  73. Huang HK, Liu PPS, Hsu JY et al (2020) Fracture risks among patients with atrial fibrillation receiving different oral anticoagulants: a real-world nationwide cohort study. Eur Heart J 41:1100–1108. https://doi.org/10.1093/eurheartj/ehz952

    Article  CAS  PubMed  Google Scholar 

  74. Lutsey PL, Norby FL, Ensrud KE et al (2020) Association of anticoagulant therapy with risk of fracture among patients with atrial fibrillation. JAMA Intern Med 180:245–253. https://doi.org/10.1001/jamainternmed.2019.5679

    Article  CAS  PubMed  Google Scholar 

  75. De Caterina R, Mundi S, Fusaro M (2020) Vitamin K antagonists and osteoporotic fractures: insights from comparisons with the NOACs. Eur Heart J 41:1109–1111

    Article  Google Scholar 

  76. Namba S, Yamaoka-Tojo M, Kakizaki R et al (2017) Effects on bone metabolism markers and arterial stiffness by switching to rivaroxaban from warfarin in patients with atrial fibrillation. Heart Vessels 32:977–982. https://doi.org/10.1007/s00380-017-0950-2

    Article  PubMed  Google Scholar 

  77. Akbari S, Rasouli-Ghahroudi AA (2018) Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. Biomed Res Int. https://doi.org/10.1155/2018/4629383

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim M, Na W, Sohn C (2013) Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice. J Clin Biochem Nutr 53:108–113. https://doi.org/10.3164/jcbn.13-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagura N, Komatsu J, Iwase H et al (2015) Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats. Biomed Rep 3:295–300. https://doi.org/10.3892/br.2015.431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kohlmeier M, Saupe J, Shearer MJ et al (1997) Bone health of adult hemodialysis patients is related to vitamin K status. Kidney Int 51:1218–1221. https://doi.org/10.1038/ki.1997.166

    Article  CAS  PubMed  Google Scholar 

  81. Fusaro M, Giannini S, Gallieni M et al (2016) Calcimimetic and vitamin D analog use in hemodialyzed patients is associated with increased levels of vitamin K dependent proteins. Endocrine. https://doi.org/10.1007/s12020-015-0673-z

    Article  PubMed  Google Scholar 

  82. Fusaro M, Gallieni M, Noale M et al (2014) The relationship between the spine deformity index, biochemical parameters of bone metabolism and vascular calcifications: results from the Epidemiological VERtebral FRACtures iTalian Study (EVERFRACT) in dialysis patients. Clin Chem Lab Med 52:1595–1603. https://doi.org/10.1515/cclm-2014-0194

    Article  CAS  PubMed  Google Scholar 

  83. Vitamin K to attenuate coronary artery calcification in hemodialysis patients—Full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01528800. Accessed 10 Oct 2020

  84. Effect of Vitamin K2 (MK7) on Cardiovascular and bone disease in dialysis patients—Full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02976246. Accessed 11 Oct 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fusaro.

Ethics declarations

Conflict of interest

M. Fusaro, G. Cianciolo, P. Evenepoel, L. Schurgers, M. Plebani declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusaro, M., Cianciolo, G., Evenepoel, P. et al. Vitamin K in CKD Bone Disorders. Calcif Tissue Int 108, 476–485 (2021). https://doi.org/10.1007/s00223-020-00792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00792-2

Keywords

Navigation