Skip to main content
Log in

Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove rigorously that the one-particle density matrix of three dimensional interacting Bose systems with a short-scale repulsive pair interaction converges to the solution of the cubic non-linear Schrödinger equation in a suitable scaling limit. The result is extended to k-particle density matrices for all positive integer k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami, R., Bardos, C., Golse, F., Teta, A.: Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension one. Asymptot. Anal. 40(2), 93–108 (2004)

    MathSciNet  Google Scholar 

  2. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. Preprint: mp-arc 05-211

  3. Bardos, C., Golse, F., Mauser, N.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7, 275–293 (2000)

    MathSciNet  Google Scholar 

  4. Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, vol. 46. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  5. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lect. Notes Math., vol. 10. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  6. Davies, E.B.: The functional calculus. J. Lond. Math. Soc. (2) 52(1), 166–176 (1995)

    Google Scholar 

  7. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Gross–Pitaevskii equation as the mean filed limit of weakly coupled bosons. Arch. Rat. Mech. Anal. 179(2), 265–283 (2006)

    Article  Google Scholar 

  8. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. To appear in Commun. Pure Appl. Math. Preprint arXiv:math-ph/0504051

  9. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Preprint arXiv:math-ph/0410005

  10. Erdős, L., Yau, H.-T.: Linear Boltzmann equation as the weak coupling limit of the random Schrödinger equation. Commun. Pure Appl. Math. 53, 667–735 (2000)

    Article  Google Scholar 

  11. Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    MathSciNet  Google Scholar 

  12. Fröhlich, J., Lenzmann, E.: Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation. Séminaire Équations aux Dérivées Partielles. 2003–2004, Exp. No. XIX, École Polytech., Palaiseau (2004)

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, New York (1977)

  14. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems, I and II. Commun. Math. Phys. 66, 37–76 (1979) and 68, 45–68 (1979)

  15. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  Google Scholar 

  16. Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  Google Scholar 

  17. Lieb, E.H., Seiringer, R., Solovej, J.-P., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, Birkhäuser, Basel (2005)

  18. Lieb, E.H., Yngvason, J.: The ground state energy of a dilute Bose gas. Differential Equations and Mathematical Physics, University of Alabama, Birmingham (1999), Weikard, R., Weinstein, G. (eds.), pp. 295–306. Am. Math. Soc./Internat. Press, Providence, RI (2000)

  19. Reed, M., Simon, B.: Methods of Mathematical Physics. Vol. I. Academic Press, New-York, London (1975)

  20. Rudin, W.: Functional analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York (1973)

  21. Salmhofer, M.: Renormalization. An Introduction. Text and Monograph in Physics. Springer, Berlin (1999)

  22. Spohn, H.: Kinetic equations from hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  MathSciNet  Google Scholar 

  23. Spruch, L., Rosenberg, L.: Upper bounds on scattering lengths for static potentials. Phys. Rev. 116(4), 1034–1040 (1959)

    Article  MathSciNet  Google Scholar 

  24. Tao, T.: Local and global analysis of nonlinear dispersive and wave equations. http://www.math.ucla.edu/∼tao/preprints/books.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horng-Tzer Yau.

Additional information

Mathematics Subject Classification (2000)

5Q55; 81Q15; 81T18; 81V70

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, L., Schlein, B. & Yau, HT. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. math. 167, 515–614 (2007). https://doi.org/10.1007/s00222-006-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-006-0022-1

Keywords

Navigation