Skip to main content
Log in

Phenolic compounds profiles of different barley varieties under the action of nanocomposite complex bacterial preparation Azogran in conditions of abiotic stress

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Hordeum vulgare L. is a highly valuable cereal crop worldwide. However, its yield is decreasing due to increasing abiotic stresses. The prolonged action of oxidants creates an imbalance in the functioning of antioxidant systems. One important way to stabilize the redox homeostasis of plants is through the use of microbial preparations that enhance the synthesis of antioxidant compounds. At inoculation of seeds of the barley varieties (Burkhant, Virazh, and Copeland) with the nanocomposite complex bacterial preparation Azogran in plants, the levels of the most identified phenolic acids and flavonoids in the free and bound fractions were increased. Whereas in plants whose seeds were stressed with hydrogen peroxide (H2O2) and inoculated with Azogran, phenolic compounds (Ph-OH) with a high ability to inactivate the harmful effects of H2O2 dominated. In particular, in the plants of the Burkhant barley variety, the concentration-free chlorogenic (by 33.1%), syringic, benzoic, p-coumaric acids, rutin and bound chlorogenic, benzoic and trans-ferulic acids increased. In the plants of the Virazh barley variety, the levels of free caffeic, syringic acids, quercetin and bound 4-hydroxyphenylacetic (4-HPA), trans-ferulic, sinapic, trans-cinnamic acids, quercetin, and kaempferol increased. In plants of the Copeland barley variety, only the content of 4-HPA and trans-ferulic (by 79.9%) acids in the free fraction and syringic acid in the bound fraction was raised. Thus, despite the unequal response of different varieties of barley to the action of the bacterial preparation Azogran, the synthesis of those Ph-OH, which are an effective buffer against peroxide stress, increased in their plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163. https://doi.org/10.1186/1471-2229-11-163

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vanlerberghe G (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847. https://doi.org/10.3390/ijms14046805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le Gal K, Schmidt EE, Sayin VI (2021) Cellular redox homeostasis. Antioxidants 10:1331–1337. https://doi.org/10.3390/antiox10091377

    Article  CAS  Google Scholar 

  4. Genestra M (2007) Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell Signal 19(9):1807–1819. https://doi.org/10.1016/j.cellsig.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  5. Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65:3783–3798. https://doi.org/10.1093/jxb/ert477

    Article  PubMed  Google Scholar 

  6. Adrian CN, Andrew JF, Timothy SG, Philip LB, Luke R, Cesar R, Joanne R, Brian JS, Stuart S, William TB, Robbie W, Philip JW, Ian JB (2011) Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Sec 3:141–178. https://doi.org/10.1007/s12571-011-0126-3

    Article  Google Scholar 

  7. Foyer CH, Trebst A, Noctor G (2005) Protective and signaling functions of ascorbate, glutathione and tocopherol in chloroplasts. In: Demming-Adams B, Adams WW (eds) Advances in photosynthesis and respiration: photoprotection, photoinhibition, gene regulation, and environment. Kluwer Academic, Dordrecht, pp 241–268

    Google Scholar 

  8. Chaki M, Begara-Morales JC, Barroso JB (2020) Oxidative stress in plants. Antioxidants 9(6):481–488. https://doi.org/10.3390/antiox9060481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdelaal K, AlKahtani M, Attia K, Hafez Y, Kiraly L, Künstler A (2021) The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 10:520–523. https://doi.org/10.3390/biology10060520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  11. Kumari P, Meena M, Upadhyay RS (2018) Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal Agric Biotechnol 16:155–162. https://doi.org/10.1016/j.bcab.2018.07.029

    Article  Google Scholar 

  12. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837. https://doi.org/10.1094/MPMI-19-0827

    Article  CAS  PubMed  Google Scholar 

  13. Kumar A, Patel JS, Meena VS, Ramteke PW (2019) Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J Plant Nutr 42:1402–1415. https://doi.org/10.1080/01904167.2019.1616757

    Article  CAS  Google Scholar 

  14. Chandran H, Meena M, Swapnil P (2021) Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability 13(19):10986. https://doi.org/10.3390/su131910986

    Article  CAS  Google Scholar 

  15. Cosme P, Rodriguez AB, Espino J, Garrido M (2020) Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants (Basel) 9(12):1263. https://doi.org/10.3390/antiox9121263

    Article  CAS  PubMed  Google Scholar 

  16. Ballard CR, Maróstica MR (2018) Health benefits of flavonoids. In: Segura-Campos MR (ed) Bioactive compounds: health benefits and potential applications. Elsevier Inc., Amsterdam, pp 185–201

    Google Scholar 

  17. Kurdish IK, Roy AO (2003) Strain of bacteria Bacillus subtilis for bacterial fertilizer obtaining for plant-growing. Patent of Ukraine No. 54923A, 17 March 2003 (in Ukraine)

  18. Kurdish IK, Bega ZT (2006) Strain of bacteria Azotobacter vinelandii for bacterial fertilizer obtaining for plant-growing. Patent of Ukraine No. 72856, 15 July 2006 (in Ukraine)

  19. Kurdish I, Roy A, Hryshchenko R (2019) Method for obtaining a nanocomposite complex bacterial preparation for crop production. Patent for utility model No. 135362 Ukraine, 24 Oct 2019 (in Ukraine)

  20. Menkina RA (1950) Bacteria which mineralize organic phosphorus compounds. Microbiology 19(4):308–315

    CAS  PubMed  Google Scholar 

  21. Dobrovolskaya TG, Skvortsova IN, Lysak LV (1989) Methods of isolation and identification of soil bacteria. Lomonosov Moscow State University, Moscow (Book in Russian)

    Google Scholar 

  22. Rubenchik LI (1960) Azotobacter and its application in agriculture. USSR Academy of Science publishers, Kyiv

    Google Scholar 

  23. Babbar N, Oberoi HS, Sandhu SK, Bhargav VK (2014) Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol 51(10):2568–2575. https://doi.org/10.1007/s13197-012-0754-4

    Article  CAS  PubMed  Google Scholar 

  24. Pereira GA, Arruda HS, de Morais DR, Peixoto Araujo NM, Pastore GM (20202) Mutamba (Guazuma ulmifolia Lam) fruit as a novel source of dietary fiber and phenolic compounds. Food Chem 310:125857. https://doi.org/10.1016/j.foodchem.2019.125857

  25. Seo ON, Kim GS, Kim YH, Park S, Jeong SW, Lee SJ, Jin JS, Shin SC (2013) Determination of polyphenol components of Korean Scutellaria baicalensis Georgi using liquid chromatography-tandem mass spectrometry: contribution to overall antioxidant activity. J Funct Foods 5:1741–1750. https://doi.org/10.1016/j.jff.2013.07.020

    Article  CAS  Google Scholar 

  26. Tao W, Zhou Z, Zhao B, Wei T (2016) Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC–MS–MS method. J Pharm Biomed Anal 131:140–145. https://doi.org/10.1016/j.jpba.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  27. Tótha G, Barabás C, Tóth A, Kéry Á, Béni S, Boldizsár I, Varga E, Noszál B (2016) Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed Chromatogr 30:923–932. https://doi.org/10.1002/bmc.3630

    Article  CAS  Google Scholar 

  28. Lakin GF (1990) Biometrics. Higher School, Moscow (Book in Russian)

    Google Scholar 

  29. Singh R (2019) Microbial biotechnology: a promising implement for sustainable agriculture. In: Sing JS, Singh DP (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, B. V, pp 107–114

    Chapter  Google Scholar 

  30. Davranov K, Shurigin V, Samadiy S, Djalolova B (2021) The conception of microbial preparations development for crop production. Microbiol J 83(1):87–100. https://doi.org/10.15407/microbiolj83.01.087

    Article  Google Scholar 

  31. van Loon LC (2007) Plant responses to plant growth promoting rhizobacteria. Eur J Plant Pathol 119:243–254. https://doi.org/10.1007/s10658-007-9165-1

    Article  CAS  Google Scholar 

  32. Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52. https://doi.org/10.1016/j.micres.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368. https://doi.org/10.1007/s00284-005-5578-2

    Article  CAS  PubMed  Google Scholar 

  34. Cappellari L, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22. https://doi.org/10.1016/j.apsoil.2013.04.001

    Article  Google Scholar 

  35. Singh UP, Sarma BK, Singh DP (2003) Effect of plant growth-promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum L.). Curr Microbiol 46:131–140. https://doi.org/10.1007/s00284-002-3834-2

    Article  CAS  PubMed  Google Scholar 

  36. Elguera JCT, Barrientos EY, Wrobel K, Wrobel K (2013) Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiol Plant 35:431–441. https://doi.org/10.1007/s11738-012-1086-8

    Article  CAS  Google Scholar 

  37. Radi AA, Farghaly FA, Hamada AF (2013) Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3(1):B72–B88

    Google Scholar 

  38. Chakraborty U, Pradhan B (2012) Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz J Plant Physiol 24(2):117–130. https://doi.org/10.1590/S1677-04202012000200005

    Article  CAS  Google Scholar 

  39. Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6. https://doi.org/10.1590/1678-4685-GMB-2015-0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kowalczewski PŁ, Radzikowska D, Ivanišová E, Szwengiel A, Kačániová M, Sawinska Z (2020) Influence of abiotic stress factors on the antioxidant properties and polyphenols profile composition of green barley (Hordeum vulgare L.). Int J Mol Sci 21(2):397. https://doi.org/10.3390/ijms21020397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin XL, Yang RT, Shang YJ, Dai F, Qian YP, Cheng LX, Zhou B, Liu ZL (2010) Oxidative coupling of cinnamic acid derivatives and their radical-scavenging activities. Chin Sci Bull 55:2885–2890. https://doi.org/10.1007/s11434-010-3064-0

    Article  CAS  Google Scholar 

  42. Nićiforović N, Abramovič H (2014) Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf 13(1):34–51. https://doi.org/10.1111/1541-4337.12041

    Article  CAS  PubMed  Google Scholar 

  43. Chiappero J, Cappellari LR, Sosa Alderete LG, Palermo TB, Banchio E (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crops Prod 139:111553. https://doi.org/10.1016/j.indcrop.2019.111553

    Article  CAS  Google Scholar 

  44. Adjimani JP, Asare P (2015) Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep 2:721–728. https://doi.org/10.1016/j.indcrop.2019.111553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu Y, Wang W, Wang D, Bian X, Zhang H, Shi P (2022) Reaction mechanism of ferulic acid scavenging OH and NO2 radicals: a theoretical study. Struct Chem 33:641–647. https://doi.org/10.1007/s11224-021-01855-2

    Article  CAS  Google Scholar 

  46. Aguilar-Hernández I, Afseth NK, López-Luke T, Contreras-Torres F, Wold JP, Ornelas-Soto N (2017) Surface enhanced Raman spectroscopy of phenolic antioxidants: a systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid. Vib Spectrosc 89:113–122. https://doi.org/10.1016/j.vibspec.2017.02.002

    Article  CAS  Google Scholar 

  47. Marinova EM, Yanishlieva NV (2003) Antioxidant activity and mechanism of action of some phenolic acids at ambient and high temperature. Food Chem 81:189–197. https://doi.org/10.1016/S0308-8146(02)00411-9

    Article  CAS  Google Scholar 

  48. Karamaæ M, Kosinska A, Pegg RB (2005) Comparison of radical–scavenging activities of selected phenolic acids. Pol J Food Nutr Sci 14:165–170

    Google Scholar 

  49. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh KC (2018) Syringic acid (SA)—a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557. https://doi.org/10.1016/j.biopha.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  50. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352. https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goleniowski ME, Bonfill M, Cusido R, Palazon J (2013) Phenolic acids. In: Ramawat KG, Merillon JM (eds) Natural products. Springer, Berlin, pp 1951–1973

    Chapter  Google Scholar 

  52. Šamec D, Karalija E, Šola I, Bok VV, Salopek-Sondi B (2021) The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants 10:118. https://doi.org/10.3390/plants10010118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klein A, Keyster M, Ludidi N (2015) Response of soybean nodules to exogenously applied caffeic acid during NaCl-induced salinity. S Afr J Bot 96:13–18. https://doi.org/10.1016/j.sajb.2014.10.016

    Article  CAS  Google Scholar 

  54. Weidner S, Kordala E, Brosowska-Arendt W, Karamać M, Kosińska A, Amarowicz R (2009) Phenolic compounds and properties of antioxidants in grapevine roots followed by recovery. Acta Soc Bot Pol 78:279–286. https://doi.org/10.5586/asbp.2009.036

    Article  CAS  Google Scholar 

  55. Król A, Amarowicz R, Weidner S (2014) Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol Plant 36:1491–1499. https://doi.org/10.1007/s11738-014-1526-8

    Article  CAS  Google Scholar 

  56. Kováčik J, Klejdus B, Hedbavny J, Bačkor M (2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18:544–554. https://doi.org/10.1007/s10646-009-0312-7

    Article  CAS  PubMed  Google Scholar 

  57. André CM, Schafleitner R, Legay S, Lefèvre I, Aliaga CA, Nomberto G, Hoffmann L, Hausman JF, Larondelle Y, Evers D (2009) Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70:1107–1116. https://doi.org/10.1016/j.phytochem.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  58. Lallemand LA, Zubieta C, Lee SG, Wang Y, Acajjaoui S, Timmins J, McSweeney S, Jez JM, McCarthy JG, McCarthy AA (2012) A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiol 160(1):249–260. https://doi.org/10.1104/pp.112.202051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gramazio P, Prohens J, Plazas M, Andújar I, Herraiz F, Castillo E, Knapp S, Meyer RS, Vilanova S (2014) Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol 14(1):350. https://doi.org/10.1186/s12870-014-0350-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Senaratna T, Merritt D, Dixon K, Bunn E, Touchell D, Sivasithamparam K (2003) Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regul 39:77–81. https://doi.org/10.1023/A:1021865029762

    Article  CAS  Google Scholar 

  61. Nehela Y, Taha NA, Elzaawely AA, Xuan TD, Amin M, Ahmed ME, El-Nagar A (2021) Benzoic acid and its hydroxylated derivatives suppress early blight of tomato (Alternaria solani) via the induction of salicylic acid biosynthesis and enzymatic and nonenzymatic antioxidant defense machinery. J Fungi 7(8):663. https://doi.org/10.3390/jof7080663

    Article  CAS  Google Scholar 

  62. Eliseu R, Naira P, Ismael IR, Luciano VG, Camila RM, Roseane F (2011) Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci Technol 31(4):911–917. https://doi.org/10.1590/S0101-20612011000400013

    Article  Google Scholar 

  63. Tserkovniak LS (2011) Biologically active compounds of Azotobacter vinelandii IMV V-7076 and Bacillus subtilis IMV V-7023 and their influence on plants. Dissertation, Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine

  64. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stompor-Goracy M, Machaczka M (2021) Recent advances in biological activity, new formulations and prodrugs of ferulic acid. Int J Mol Sci 22(23):12889. https://doi.org/10.3390/ijms222312889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  CAS  Google Scholar 

  67. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907–916. https://doi.org/10.1007/s00374-011-0598-5

    Article  CAS  Google Scholar 

  68. Rajhard S, Hladnik L, Vicente FA, Srčič S, Grilc M, Likozar B (2021) Characterization of flavonoids and polyphenolic compounds and solubility determination of luteolin in water, nonpolar, polar aprotic and protic solvents. Processes 9:1952. https://doi.org/10.3390/pr9111952

    Article  CAS  Google Scholar 

  69. Lahouar L, El Arem A, Ghrairi F, Chahdoura H, Ben Salem H, El Felah M, Achour L (2014) Phytochemical content and antioxidant properties of diverse varieties of whole barley (Hordeum vulgare L.) grown in Tunisia. Food Chem 145:578–583. https://doi.org/10.1016/j.foodchem.2013.08.102

    Article  CAS  PubMed  Google Scholar 

  70. Jeon J-S, Carreno-Quintero N, van Eekelen HDLM, De Vos RCH, Raaijmakers JM, Etalo DW (2021) Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea. Sci Rep 11:2781. https://doi.org/10.1038/s41598-021-82238-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Busto MD, Meza V, Ortega N, Perez-Mateos M (2007) Immobilization of ´ naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices. Food Chem 104(3):1177–1182. https://doi.org/10.1016/j.foodchem.2007.01.033

    Article  CAS  Google Scholar 

  72. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 90(7):1238–1244. https://doi.org/10.1002/jsfa.3959

    Article  CAS  PubMed  Google Scholar 

  73. Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561. https://doi.org/10.1111/j.1469-8137.2004.01126.x

    Article  CAS  PubMed  Google Scholar 

  74. Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601. https://doi.org/10.1111/j.1365-3040.2007.01748.x

    Article  CAS  PubMed  Google Scholar 

  75. Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, Ruoff P, Verheul M, Lillo C (2009) Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ 32:286–299. https://doi.org/10.1111/j.1365-3040.2008.01920.x

    Article  CAS  PubMed  Google Scholar 

  76. Bathia C, Pandey A, Gaddam SR, Hoecker U, Trivedi PK (2018) Low temperature-enhanced flavonol synthesis requires light-associated regulatory components in Arabidopsis thaliana. Plant Cell Physiol 59:2099–2112. https://doi.org/10.1093/pcp/pcy132

    Article  CAS  Google Scholar 

  77. Xi-Juan Y, Bin D, Ming-Tao F (2018) Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules 23(4):879. https://doi.org/10.3390/molecules23040879

    Article  CAS  Google Scholar 

  78. Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187. https://doi.org/10.1021/jf0205099

    Article  CAS  PubMed  Google Scholar 

  79. Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG, Lee SJ, Chun SC, Chung IM (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem 55:4802–4809. https://doi.org/10.1021/jf0701943

    Article  CAS  PubMed  Google Scholar 

  80. Ali MB, McNear DH (2014) Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biol 14:84. https://doi.org/10.1186/1471-2229-14-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jeon J-S, Rybka D, Carreno-Quintero N, de Vos R, Raaijmakers J, Etalo D (2022) Metabolic signatures of rhizobacteria-induced plant growth promotion. Plant Cell Environ 45(10):3086–3099. https://doi.org/10.1111/pce.14385

    Article  CAS  PubMed  Google Scholar 

  82. Mamiedova EI (2017) Effect of hydrothermal conditions and agrotechnological practices of growing on peculiarities of growth and development of spring barley plants in Northern Steppe. Grain Crops 1(2):300–306

    Google Scholar 

  83. Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signalling molecules. Biochim Biophys Acta 1763:1478–1495. https://doi.org/10.1016/j.bbamcr.2006.08.031

    Article  CAS  PubMed  Google Scholar 

  84. Jamaludin R, Mat N, Mohd KS, Badaluddin NA, Mahmud K, Sajili MH, Khandaker MM (2020) Influence of exogenous hydrogen peroxide on plant physiology, leaf anatomy and rubisco gene expression of the Ficus deltoidea Jack var. Deltoidea. Agronomy 10(4):497. https://doi.org/10.3390/agronomy10040497

    Article  CAS  Google Scholar 

  85. Ayuso-Calles M, Garcia-Estevez I, Jimenez-Gomez A, Flores-Felix JD, Escribano-Bailon MT, Rivas R (2020) Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods 9(9):1166. https://doi.org/10.3390/foods9091166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zapata-Sifuentes G, Hernandez-Montiel LG, Saenz-Mata J, Fortis-Hernandez M, Blanco-Contreras E, Chiquito-Contreras RG, Preciado-Rangel P (2022) Plant growth-promoting rhizobacteria improve growth and fruit quality of cucumber under greenhouse conditions. Plants 11:1612. https://doi.org/10.3390/plants11121612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zaferanchi S, Salmasi SZ, Lisar SYS, Sarichami MR (2019) Influence of organics and bio fertilizers on biochemical properties of Calendula officinalis L. Int J Hort Sci Technol 6(1):125–136. https://doi.org/10.22059/ijhst.2019.266831.258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Department of Microbiological Processes on Solid Surfaces, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine for useful advice in experimental work with plants under greenhouse conditions.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

IS designed experiments, performed extraction of phenolic compounds from plant material, analyzed data and wrote manuscript. UE participated in designing the experiments, experiment analysis, and interpretation of data. BD provided seeds of two barley varieties Burkhant (Mongolia) and Copeland (Canada). MK performed HPLC analysis.

Corresponding author

Correspondence to Iryna Skorochod.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethics requirements

The authors declare this study was conducted in accordance with ethical guidelines and principles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorochod, I., Erdenetsogt, U., Dondov, B. et al. Phenolic compounds profiles of different barley varieties under the action of nanocomposite complex bacterial preparation Azogran in conditions of abiotic stress. Eur Food Res Technol 250, 1307–1325 (2024). https://doi.org/10.1007/s00217-023-04460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04460-1

Keywords

Navigation