Skip to main content
Log in

Ester-functionalized pillar[6]arene as the gas chromatographic stationary phase with high-resolution performance towards the challenging isomers of xylenes, diethylbenzenes, and ethyltoluenes

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work presents the first example of the utilization of polar ester group functionalized pillar[6]arene (P6A-C10-OAc) as a stationary phase for capillary gas chromatographic (GC) separations. The statically coated P6A-C10-OAc column showed a high column efficiency of 5393 plates/m and moderate polar nature. Its resolving capability and retention behaviors were investigated for a mixture of 20 analytes and more than a dozen isomers from apolar to polar in nature. As evidenced, the P6A-C10-OAc column achieved high-resolution separations of all the analytes and good inertness. Importantly, it exhibited distinctly advantageous performance for high resolution of the challenging isomers of xylenes, diethylbenzenes, ethyltoluenes, and halobenzenes over the commercial HP-5 (5% phenyl dimethyl polysiloxane), HP-35 (25% phenyl dimethyl polysiloxane), and PEG-20M (polyethylene glycol) columns.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Nadzir MSM, Othman M, Sahani M, Wahab MIA, Mohamad N, Uning R, Poh SC, Fadzil MF, Sentian J, Tahir NM. BTEX compositions and its potential health impacts in Malaysia. Chemosphere. 2019;237:124451. https://doi.org/10.1016/j.chemosphere.2019.124451.

    Article  PubMed  CAS  Google Scholar 

  2. Spánik I, Machynáková A. Recent applications of gas chromatography with high-resolution mass spectrometry. J Sep Sci. 2018;41(1):163–79. https://doi.org/10.1002/jssc.201701016.

    Article  PubMed  CAS  Google Scholar 

  3. Ding YJ, Alimi LO, Du J, Hua B, Dey A, Yu P. Pillar[3]trianglamines: deeper cavity triangular macrocycles for selective hexene isomer separation. Chem Sci. 2022;13(11):3244–8. https://doi.org/10.1039/d2sc00207h.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Armstrong DW, He LF, Liu YS. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem. 1999;71(17):3873–6. https://doi.org/10.1021/ac990443p.

    Article  PubMed  CAS  Google Scholar 

  5. Baltazar QQ, Leininger SK, Anderson JL. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J Chromatogr A. 2008;1182(1):119–27. https://doi.org/10.1016/j.chroma.2007.12.075.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JL, Armstrong DW. High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem. 2003;75(18):4851–8. https://doi.org/10.1021/ac0345749.

    Article  PubMed  CAS  Google Scholar 

  7. Yusuf K, Badjah-Hadj-Ahmed AY, Aqel A, Alothman ZA. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules. J Chromatogr A. 2015;1406:299–306. https://doi.org/10.1016/j.chroma.2015.06.026.

    Article  PubMed  CAS  Google Scholar 

  8. Chen BL, Liang CD, Yang J, Contreras DS, Clancy YL, Lobkovsky EB, Yaghi OM, Dai S. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew Chem Int Ed. 2006;45(9):1390–3. https://doi.org/10.1002/anie.200502844.

    Article  CAS  Google Scholar 

  9. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166–70. https://doi.org/10.1126/science.1120411.

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Lohse MS, Bein T. Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mate. 2018;28(33):1705553. https://doi.org/10.1002/adfm.201705553.

    Article  CAS  Google Scholar 

  11. Yang XH, Li CX, Qi ML, Qu LT. A graphene-based porous carbon material as a stationary phase for gas chromatographic separations. RSC Adv. 2017;7(51):32126–32. https://doi.org/10.1039/c7ra04774f.

    Article  ADS  CAS  Google Scholar 

  12. Zarei A, Rashidi A, Tehrani MS, Azar PA. Molecular-sieve porous graphene as a steady phase of gas chromatography column for dissociation and measurement of nitrous oxide, carbon dioxide and gaseous hydrocarbons. Int J Environ Sci Technol. 2019;16(7):3049–60. https://doi.org/10.1007/s13762-018-1670-6.

    Article  CAS  Google Scholar 

  13. Trens P, Belarbi H, Shepherd C, Gonzalez P, Ramsahye NA, Lee UH, Seo YK, Chang JS. Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): an experimental and computational study. Microporous Mesoporous Mater. 2014;183:17–22. https://doi.org/10.1016/j.micromeso.2013.08.040.

    Article  CAS  Google Scholar 

  14. Shinbo T, Yamaguchi T, Nishimura K, Sugiura M. Chromatogrtographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. J Chromatogr. 1987;405:145–53. https://doi.org/10.1016/s0021-9673(01)81756-8.

    Article  PubMed  CAS  Google Scholar 

  15. Hyun MH, Jin JS, Lee WJ. Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J Chromatogr A. 1998;822:155–61. https://doi.org/10.1016/s0021-9673(98)00606-2.

    Article  Google Scholar 

  16. Hyun MH. Preparation and application of HPLC chiral stationary phases based on (+) -(18-crown-6)-2,3,11,12-tetracarboxylic acid. J Sep Sci. 2006;29:750–61. https://doi.org/10.1002/jssc.200500431.

    Article  PubMed  CAS  Google Scholar 

  17. Juvancz Z, Alexander G, Szejtli J. Permethylated β-cyclodextrin as stationary phase in capillary gas chromatography. J High Resolut Chromatogr. 1987;10(22):105–7. https://doi.org/10.1002/jhrc.1240100214.

    Article  CAS  Google Scholar 

  18. Konig WA, Lutz S, Wenz G. Modified cyclodextrins-novel, highly enantioselective stationary phases for gas chromatography. Angew Chem Int Ed. 1988;27(7):979–80. https://doi.org/10.1002/anie.198809791.

    Article  Google Scholar 

  19. Armstrong D, Li WY, Pitha J. Reversing enantioselectivity in capillary gas chromatography with polar and nonpolar cyclodextrin derivative phases. Anal Chem. 1990;62(2):201–8. https://doi.org/10.1021/ac00201a023.

    Article  Google Scholar 

  20. Zhang WF, Feng YM, Pan L, Zhang GR, Guo Y, Zhao WD, Xie ZK, Zhang SS. Silica microparticles modified with ionic liquid bonded chitosan as hydrophilic moieties for preparation of high-performance liquid chromatographic stationary phases. Microchim Acta. 2023;190(5):176. https://doi.org/10.1007/s00604-023-05755-6.

    Article  CAS  Google Scholar 

  21. Jon SY, Selvapalam N, Oh DH, Kang JK, Kim SY, Jeon YJ, Lee JW, Kim K. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J Am Chem Soc. 2003;125(34):10186–7. https://doi.org/10.1021/ja036536c.

    Article  PubMed  CAS  Google Scholar 

  22. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res. 2003;34(8):621–30. https://doi.org/10.1021/ar020254k.

    Article  CAS  Google Scholar 

  23. Liu SM, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L. The cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc. 2005;127(45):15959–67. https://doi.org/10.1021/ja055013x.

    Article  PubMed  CAS  Google Scholar 

  24. Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc. 2008;130:5022–3. https://doi.org/10.1021/ja711260m.

    Article  PubMed  CAS  Google Scholar 

  25. Hu XB, Chen ZX, Chen L, Zhang L, Hou JL, Li ZT. Pillar[n]arenes (n=8-10) with two cavities: synthesis, structures and complexing properties. Chem Commun. 2012;48(89):10999–1001. https://doi.org/10.1039/c2cc36027f.

    Article  CAS  Google Scholar 

  26. Ogoshi T, Ueshima N, Sakakibara F, Yamagishi T, Haino T. Conversion from pillar[5]arene to pillar[6-15]arenes by ring expansion and encapsulation of C60 by pillar[n]arenes with nanosize cavities. Org Lett. 2014;16(11):2896–9. https://doi.org/10.1021/ol501039u.

    Article  PubMed  CAS  Google Scholar 

  27. Ogoshi T, Yamagishi T. Pillararenes: versatile synthetic receptors for supramolecular chemistry. Eur J Org Chem. 2013;15:2961–75. https://doi.org/10.1002/ejoc.201300079.

    Article  CAS  Google Scholar 

  28. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Definition of the hydrogen bond. Pure Appl Chem. 2011;83(8):1637–41. https://doi.org/10.1351/pac-rec-10-01-02.

    Article  CAS  Google Scholar 

  29. Han K, Zhang YY, Li J, Yu YH, Jia XS, Li CJ. Binding mechanisms and driving forces for the selective complexation between pillar[5]arenes and neutral nitrogen heterocyclic compounds. Eur J Org Chem. 2013;2013(11):2057–60. https://doi.org/10.1002/ejoc.201201647.

    Article  ADS  CAS  Google Scholar 

  30. Strutt NL, Zhang HC, Schneebeli ST, Stoddart JF. Functionalizing pillar[n]arenes. Acc of Chem Res. 2014;47(8):2631–42. https://doi.org/10.1021/ar500177d.

    Article  CAS  Google Scholar 

  31. Wang KY, Jordan JH, Velmurugan K, Tian XQ, Zuo MZ, Hu XY, Wang LY. Role of functionalized pillararene architectures in supramolecular catalysis. Angew Chem Int Ed. 2020;60(17):9205–14. https://doi.org/10.1002/anie.202010150.

    Article  CAS  Google Scholar 

  32. Yao Y, Chi XD, Zhou YJ, Huang FH. A bola-type supra-amphiphile constructed from a water-soluble pillar[5]arene and a rod–coil molecule for dual fluorescent sensing. Chem Sci. 2014;5(7):2778–82. https://doi.org/10.1039/c4sc00585f.

    Article  CAS  Google Scholar 

  33. Jie KC, Zhou YJ, Li ER, Li ZT, Zhao R, Huang FH. Reversible iodine capture by nonporous pillar[6]arene crystals. J Am Chem Soc. 2017;139(43):15320–3. https://doi.org/10.1021/jacs.7b09850.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang HC, Li C. Pillararene-functionalised graphene nanomaterials. RSC Adv. 2020;10(31):18502–11. https://doi.org/10.1039/d0ra02964e.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  35. Duan QP, Cao Y, Li Y, Hu XY, Xiao TX, Lin C, Pan Y, Wang LY. PH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc. 2013;135(28):10542–9. https://doi.org/10.1021/ja405014r.

    Article  PubMed  CAS  Google Scholar 

  36. Sun T, Chen RN, Huang QC, Ba MY, Cai ZQ, Chen HP, Qi YH, Chen H, Liu XM, Nardiello D, Quinto M. Efficient gas chromatographic separation of xylene and other aromatic isomers by using pillar [6] arene-based stationary phase. Anal Chim Acta. 2023;1251:340979. https://doi.org/10.1016/j.aca.2023.340979.

    Article  PubMed  CAS  Google Scholar 

  37. Sun T, Huang QC, Zhang W, Chen RN, Li W, Chen HP, Hu SQ, Cai ZQ. Performance and selectivity of amphiphilic pillar[5]arene as stationary phase for capillary gas chromatography. J Chromatogr A. 2022;1671:463008. https://doi.org/10.1016/j.chroma.2022.463008.

    Article  PubMed  CAS  Google Scholar 

  38. Shi YY, Qi ML. Separation performance of the copolymer and homopolymer of aliphatic polycarbonate diols as the stationary phases for capillary as chromatography. J Chromatogr A. 2021;1649:462223. https://doi.org/10.1016/j.chroma.2021.462223.

    Article  PubMed  CAS  Google Scholar 

  39. Sun T, Chen RN, Huang QC, Ba MY, Cai ZQ, Hu SQ, Liu XM, Nardiello D, Quinto M. Chromatographic separation of aromatic amine isomers: a solved issue by a new amphiphilic pillar[6]arene stationary phase. ACS Appl Mater Interfaces. 2022;14(50):56132–42. https://doi.org/10.1021/acsami.2c17889.

    Article  PubMed  CAS  Google Scholar 

  40. Poole CF, Lenca N. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. J Chromatogr A. 2014;1357:87–109. https://doi.org/10.1016/j.chroma.2014.03.029.

    Article  PubMed  CAS  Google Scholar 

  41. He YR, Shi TT, Qi ML. A novel triptycene-terminated polymer used as the gas chromatographic stationary phase towards organic acidic/basic analytes and isomers. Chin Chem Lett. 2021;32(11):3372–6. https://doi.org/10.1016/j.cclet.2021.04.009.

    Article  CAS  Google Scholar 

  42. Lue SJ, Liaw TH. Separation of xylene mixtures using polyurethane-zeolite composite membranes. Desalination. 2006;193(1–3):137–43. https://doi.org/10.1016/j.desal.2005.06.059.

    Article  ADS  CAS  Google Scholar 

  43. Durdakova TM, Hovorka S, Hrdlicka Z, Vopicka O. Comparison of pervaporation and perstraction for the separation of p-xylene/m-xylene mixtures using PDMS and CTA membranes. Sep Purif Technol. 2021;274:118986. https://doi.org/10.1016/j.seppur.2021.118986.

    Article  CAS  Google Scholar 

  44. Jie KC, Liu M, Zhou YJ. Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals. J Am Chem Soc. 2018;140:6921–30. https://doi.org/10.1021/jacs.8b02621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 21705072), the Colleges and Universities in Henan Province Key Science and Research Project (No. 23A150008), and the Training Project for Youth Backbone Teachers in Colleges and Universities of Luoyang Normal University.

Author information

Authors and Affiliations

Authors

Contributions

Yanli Song: investigation, methodology, formal analysis, visualization, validation, writing—original draft, writing—review and editing. Wen Li: investigation, methodology, formal analysis, validation. Mengyi Ba: methodology, visualization. Yuanyuan Zhang: validation, formal analysis. Haixin Liu: visualization, formal analysis. Xiang Xu: methodology, investigation. Haoyu Su: methodology, investigation. Zhiqiang Cai: conceptualization, methodology, supervision, resources, funding acquisition, writing—review and editing. Xianming Liu: methodology, supervision. Tao Sun: conceptualization, methodology, supervision, resources, funding acquisition, writing—review and editing.

Corresponding authors

Correspondence to Zhiqiang Cai or Tao Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2588 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Li, W., Ba, M. et al. Ester-functionalized pillar[6]arene as the gas chromatographic stationary phase with high-resolution performance towards the challenging isomers of xylenes, diethylbenzenes, and ethyltoluenes. Anal Bioanal Chem 416, 1321–1335 (2024). https://doi.org/10.1007/s00216-024-05146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05146-7

Keywords

Navigation