Skip to main content
Log in

Molecular-sieve porous graphene as a steady phase of gas chromatography column for dissociation and measurement of nitrous oxide, carbon dioxide and gaseous hydrocarbons

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A novel gas chromatography stationary phase is introduced for efficient separation of air, nitrous oxide, methane, carbon dioxide, ethane, propane, butane and pentane. Porous graphene was synthesized through a cost-effective approach. The structure and porous texture of the prepared graphene were evaluated by field-emission scanning electron microscopy and nitrogen adsorption/desorption isotherms. The results confirmed the high porosity and surface area of the synthesized porous graphene. Also, the nitrogen adsorption/desorption isotherms showed highly microporous structures with the average pore size being < 2 nm, which has high contribution in gas molecules separation. The prepared structure exhibited an excellent chromatography performance and separation efficiency compared with multi-wall, single-wall carbon nanotube and activated carbon. In addition, common problems in GC packed column by nanomaterials, such as avoiding the use of long column, flow rate reduction, agglomeration, packing compression and high back-pressure, were completely addressed; therefore, in order to overcome these problems and fabricate chromatography column 1.8″, stainless steel tubes were used in three lengths of 10, 20, 30 cm. After testing, the 30 cm column was used for determination and separation of the entered gases in continued work. In this experiment, two types of samples were used. The first sample contains air, methane, carbon dioxide and nitrous oxide gases at 40 °C, and the second sample was compared of methane, ethane, propane, butane and pentane containing hydrocarbons with temperature action of 40–200 °C. The analytical results demonstrated the superior separation efficiency of porous graphene steady phase for some gas dissociation at 40 °C and good preservative for hydrocarbons C1–C5 (while using ramp up rate of 6 °C/min) in temperature range of 40–200 °C. The packed prepared column also showed high resolution, wide linear range and acceptable repeatability in separation of studying gas mixture. The obtained detection limits obtained were lower than 4.2 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Simultaneous Analysis of Greenhouse Gases by Gas Chromatography Method 1: SP1 7890-0468 and Method 2: SP1 7890-0467.

References

  • Ali I et al (2006) Instrumental methods in metal ions speciation: chromatography, capillary electrophoresis and electrochemistry. Taylor & Francis Ltd., New York. ISBN 0-8493-3736-4

    Book  Google Scholar 

  • Ali I et al (2008) Hyphenation in sample preparation: advancement from micro to nano world. J Sep Sci 31:2040–2053

    Article  CAS  Google Scholar 

  • Ali I et al (2009a) Nano-hyphenation technologies. Lab. Plus Intl, pp 14–16

  • Ali I et al (2009) Nano chromatography and capillary electrophoresis: pharmaceutical and environmental analyses. Wiley, Hoboken. ISBN 978-0-470-17851-5

    Book  Google Scholar 

  • Ali I et al (2012) New generation adsorbents for water treatment. Chem Rev (ACS) 112:5073–5091

    Article  CAS  Google Scholar 

  • Ali I et al (2015) Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J Mol Liq 211:457–465

    Article  CAS  Google Scholar 

  • Ali I et al (2016a) Molecular uptake of congo red dye from water on iron composite nano particles. J Mol Liq 224:171–176

    Article  CAS  Google Scholar 

  • Ali I et al (2016b) Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J Mol Liq 221:1168–1174

    Article  CAS  Google Scholar 

  • Ali I et al (2016c) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864

    Article  CAS  Google Scholar 

  • Ali I et al (2016d) Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J Mol Liq 218:465–472

    Article  CAS  Google Scholar 

  • Ali I et al (2016e) Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int J Environ Sci Technol 13:733–742

    Article  CAS  Google Scholar 

  • Ali I et al (2016f) Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalination Water Treat 57(22):10409–10421

    Article  CAS  Google Scholar 

  • Ali I et al (2017a) Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J Mol Liq 236:203–205

    Google Scholar 

  • Ali I et al (2017b) Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J Mol Liq 441:123–129

    Article  CAS  Google Scholar 

  • Arora G et al (2007) Molecular sieving using single wall carbon nanotubes. Nano Lett 7:565–569

    Article  CAS  Google Scholar 

  • Bae YS et al (2011) Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Ed 50:11586–11596

    Article  CAS  Google Scholar 

  • Barrett EP et al (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Boissiere C et al (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23:599–623

    Article  CAS  Google Scholar 

  • Cooper AI et al (2003) Porous materials and supercritical fluids. Adv Mater 15:1049–1059

    Article  CAS  Google Scholar 

  • Dangi GP et al (2012) Adsorption selectivity of CO2 over N2 by cation exchanged zeolite L: experimental and simulation studies. Indian J Chem 51:1238–1251

    Google Scholar 

  • Davis ME et al (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  Google Scholar 

  • Dreyfus S et al (2005) Direct trace and ultra-trace metals determination in crude oil and fractions by inductively coupled plasma mass spectrometry. J ASTM Int 2:JAI12969

    Article  Google Scholar 

  • Emsley J (1989) The elements. Oxford University Press, New York

    Google Scholar 

  • Fan J et al (2015) Performance of graphene sheets as stationary phase for capillary gas chromatographic separations. J Chromatogr A 1399:74–79

    Article  CAS  Google Scholar 

  • Han S et al (2014) Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 26:849–864

    Article  CAS  Google Scholar 

  • Han N et al (2015) Chromatographic selectivity of graphene capillary column pretreated with bio-inspired polydopamine polymer. RSC Adv 5:74040–74045

    Article  CAS  Google Scholar 

  • Hinds BJ et al (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65

    Article  CAS  Google Scholar 

  • Hussain CM et al (2010) Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns. Anal Chem 82:5184–5188

    Article  CAS  Google Scholar 

  • Jiang DE et al (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024

    Article  CAS  Google Scholar 

  • Karwa M et al (2006) Gas chromatography on self-assembled, single-walled carbon nanotubes. Anal Chem 78:2064–2070

    Article  CAS  Google Scholar 

  • Kim S et al (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294:147–158

    Article  CAS  Google Scholar 

  • Lee J et al (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  • Li Q et al (1003) Evaluation of multi-walled carbon nanotubes as gas chromatographic column packing. J Chromatogr A 2003:203–209

    Google Scholar 

  • Lu AH et al (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805

    Article  CAS  Google Scholar 

  • Matisová E et al (1995) Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples. J Chromatogr A 707:145–179

    Article  Google Scholar 

  • Miller JM et al (2009) Basic gas chromatography. Wiley, Hoboken

    Google Scholar 

  • Mittermüller M et al (2012) Micro-and nanostructures and their application in gas chromatography. Analyst 137:3195–3201

    Article  CAS  Google Scholar 

  • Mohd MA (2012) Advanced gas chromatography progress in agricultural, biomedical and industrial applications. InTech, Croatia

    Book  Google Scholar 

  • Muhammad I et al (2013) SARA separation and determination of concentration levels of some heavy metals in organic fractions of Nigerian crude oil. Chem Mater Res 3(4):2224–3224

    Google Scholar 

  • Newsome DA et al (2006) Influences of interfacial resistances on gas transport through carbon nanotube membranes. Nano Lett 6:2150–2153

    Article  CAS  Google Scholar 

  • Perry JD et al (2006) Polymer membranes for hydrogen separations. MRS Bull 31:745–749

    Article  CAS  Google Scholar 

  • Rashidi A et al (2013) Fabrication and evaluation of non-porous graphene by a unique spray pyrolysis method. Chem Eng Technol 36(9):1550–1558

    Article  CAS  Google Scholar 

  • Safavi A et al (2010) Single-walled carbon nanotubes as stationary phase in gas chromatographic separation and determination of argon, carbon dioxide and hydrogen. Anal Chim Acta 675:207–212

    Article  CAS  Google Scholar 

  • Saridara C et al (2005) Chromatography on self-assembled carbon nanotubes. Anal Chem 77:7094–7097

    Article  CAS  Google Scholar 

  • Sholl DS et al (2006) Making high-flux membranes with carbon nanotubes. Science 312:1003–1004

    Article  CAS  Google Scholar 

  • Sing KS et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Skoog DA et al (1980) Principles of instrumental analysis. Saunders College, Philadelphia

    Google Scholar 

  • Speltini A et al (2013) Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal Chim Acta 783:1–16

    Article  CAS  Google Scholar 

  • Srivastava A et al (2004) Carbon nanotube filters. Nat Mater 3:610–614

    Article  CAS  Google Scholar 

  • Sznejer GA et al (2004) Carbon membranes for high temperature gas separations: experiment and theory. AIChE J 50:596–610

    Article  CAS  Google Scholar 

  • Thomas A et al (2010) Functional materials from hard to soft porous frameworks. Angew Chem Int Ed 49:8328–8344

    Article  CAS  Google Scholar 

  • White RJ et al (2009a) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418

    Article  CAS  Google Scholar 

  • White RJ et al (2009b) Supported metal nanoparticles on porous materials, methods and applications. Chem Soc Rev 38:481–494

    Article  CAS  Google Scholar 

  • Yuan L-M et al (2006) Single-walled carbon nanotubes used as stationary phase in GC. Anal Chem 78:6384–6390

    Article  CAS  Google Scholar 

  • Zhang H et al (2005) Synthesis and applications of emulsion-templated porous materials. Soft Matter 1:107–113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted at Research Institute of Petroleum Industry (in Iran) with participation of Azad University Branch of Science and Research and additionally. We thank our colleagues from who provided intelligence and experience that greatly aided the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rashidi.

Additional information

Editorial responsibility: V.K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, A., Rashidi, A., Saber Tehrani, M. et al. Molecular-sieve porous graphene as a steady phase of gas chromatography column for dissociation and measurement of nitrous oxide, carbon dioxide and gaseous hydrocarbons. Int. J. Environ. Sci. Technol. 16, 3049–3060 (2019). https://doi.org/10.1007/s13762-018-1670-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1670-6

Keywords

Navigation