Skip to main content

Advertisement

Log in

Enhancing intracellular mRNA precise imaging-guided photothermal therapy with a nucleic acid-based polydopamine nanoprobe

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Despite significant advancements in cancer research, real-time monitoring and effective treatment of cancer through non-invasive techniques remain a challenge. Herein, a novel polydopamine (PDA) nucleic acid nanoprobe has been developed for imaging signal amplification of intracellular mRNA and precise photothermal therapy guidance in cancer cells. The PDA nucleic acid nanoprobe (PDA@DNA) is constructed by assembling an aptamer hairpin (H1) labeled with the Cy5 fluorophore and another nucleic acid recognition hairpin (H2) onto PDA nanoparticles (PDA NPs), which have exceptionally high fluorescence quenching ability and excellent photothermal conversion properties. The nanoprobe could facilitate cellular uptake of DNA molecules and their protection from nuclease degradation. Upon recognition and binding to the intracellular mRNA target, a catalytic hairpin assembly (CHA) reaction occurs. The stem of H1 unfolds upon binding, allowing the exposed H1 to hybridize with H2, forming a flat and sturdy DNA double-stranded structure that detaches from the surface of PDA NPs. At the same time, the target mRNA is displaced and engages in a new cyclic reaction, resulting in the recovery and significant amplification of Cy5 fluorescence. Using thymidine kinase1 (TK1) mRNA as a model mRNA, this nanoprobe enables the analysis of TK1 mRNA with a detection limit of 9.34 pM, which is at least two orders of magnitude lower than that of a non-amplifying imaging nucleic acid probe. Moreover, with its outstanding performance for in vitro detection, this nanoprobe excels in precisely imaging tumor cells. Through live-cell TK1 mRNA imaging, it can accurately distinguish between tumor cells and normal cells. Furthermore, when exposed to 808-nm laser irradiation, the nanoprobe fully harnesses exceptional photothermal conversion properties of PDA NPs. This results in a localized temperature increase within tumor cells, which ultimately triggers apoptosis in these tumor cells. The integration of PDA@DNA presents innovative prospects for tumor diagnosis and image-guided tumor therapy, offering the potential for high-precision diagnosis and treatment of tumors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haider M, Zaki KZ, Hamshary MRE, Hussain Z, Orive G, Ibrahim HO. Polymeric nanocarriers: a promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res. 2022;39:237–55.

    Article  PubMed  CAS  Google Scholar 

  2. McWilliams A, Lam B, Sutedja T. Early proximal lung cancer diagnosis and treatment. Eur Respir J. 2009;33:656–65.

    Article  PubMed  CAS  Google Scholar 

  3. Yang J, Xu R, Wang C, Qiu J, Ren B, You L. Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Commun. 2021;41:1257–74.

    Article  CAS  Google Scholar 

  4. Thakur SK, Singh DP, Choudhary J. Lung cancer identification: a review on detection and classification. Cancer Metast Rev. 2020;39:989–98.

    Article  Google Scholar 

  5. Njoku K, Chiasserini D, Whetton AD, Crosbie EJ. Proteomic biomarkers for the detection of endometrial cancer. Cancers. 2019;11:1572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. McGee JP, Su P, Durbin KR, Hollas MA, Bateman NW, Maxwell GL, Conrads TP, Fellers RT, Melani RD, Camarillo JM, Kafader JO, Kelleher NL. Automated imaging and identification of proteoforms directly from ovarian cancer tissue. Nat Commun. 2023;14:6478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Waks AG, Winer EP. Breast cancer treatment: a review. Jama. 2019;321:288–300.

    Article  PubMed  CAS  Google Scholar 

  8. Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. Bmj. 2020;371: m3773.

    Article  PubMed  Google Scholar 

  9. Cullen JK, Simmons JL, Parsons PG, Boyle GM. Topical treatments for skin cancer. Adv Drug Deliver Rev. 2020;153:54–64.

    Article  CAS  Google Scholar 

  10. Ishaqat A, Herrmann A. Polymers strive for accuracy: from sequence-defined polymers to mRNA vaccines against COVID-19 and polymers in nucleic acid therapeutics. J Am Chem Soc. 2021;143:20529–45.

    Article  PubMed  CAS  Google Scholar 

  11. Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, tunability, and tenacity of RNA as rubbery anionic polymeric materials in nanotechnology and nanomedicine-specific cancer targeting with undetectable toxicity. Chem Rev. 2021;121:7398–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci. 2022;13:4753–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fleming SR, Himes PM, Ghodge SV, Goto Y, Suga H, Bowers AA. Exploring the post-translational enzymology of PaaA by mRNA display. J Am Chem Soc. 2020;142:5024–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu C, Deng J, Yi J, Zhang R, Chen L, Fu X, Liao S, Wenjun Yi G, Yang H. A novel binding-induced DNAzyme motor triggered by survivin mRNA. Anal Bioanal Chem. 2022;414:6167–75.

    Article  PubMed  CAS  Google Scholar 

  15. Lin M, Yi X, Huang F, Ma X, Zuo X, Xia F. Photoactivated nanoflares for mRNA detection in single living cells. Anal Chem. 2019;91:2021–7.

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Wu Y, Zhang X, Liu J, Zhang Y, Yuan L, Liu M. Thermodynamic and cellular studies of doxorubicin/daunorubicin loaded by a DNA tetrahedron for diagnostic imaging, chemotherapy, and gene therapy. Int J Biol Macromol. 2023;251: 126245.

    Article  PubMed  CAS  Google Scholar 

  17. Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem Rev. 2021;121:13797–868.

    Article  PubMed  CAS  Google Scholar 

  18. Yin X, Chen B, He M, Hu B. A multifunctional platform for the capture, release, and enumeration of circulating tumor cells based on aptamer binding, nicking endonuclease-assisted amplification, and inductively coupled plasma mass spectrometry detection. Anal Chem. 2020;92:10308–15.

    Article  PubMed  CAS  Google Scholar 

  19. Jou AFJ, Chou YT, Willner I, Ho JA. Imaging of cancer cells and dictated cytotoxicity using aptamer-guided hybridization chain reaction (HCR)-generated g-quadruplex chains. Angew Chem Int Ed. 2021;60:21673–8.

    Article  CAS  Google Scholar 

  20. Liu XQ, Wang T, Wu YW, Tan YF, Jiang T, Li K, Lou BB, Chen LW, Liu YF, Liu ZB. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron. 2022;208: 114231.

    Article  PubMed  CAS  Google Scholar 

  21. He M, He M, Nie C, Yi J, Zhang J, Chen T, Chu X. mRNA-activated multifunctional DNAzyme nanotweezer for intracellular mRNA sensing and gene therapy. ACS Appl Mater Inter. 2021;13:8015–25.

    Article  CAS  Google Scholar 

  22. Gao P, Shen X, Liu X, Chen Y, Pan W, Li N, Tang B. Nucleic acid-gated covalent organic frameworks for cancer-specific imaging and drug release. Anal Chem. 2021;93:11751–7.

    Article  PubMed  CAS  Google Scholar 

  23. Egloff S, Melnychuk N, Cruz Da Silva E, Reisch A, Martin S, Klymchenko A S. Amplified fluorescence in situ hybridization by small and bright dye-loaded polymeric nanoparticles. ACS Nano. 2021;16:1381–1394.

  24. Du H, Li X, Xu S, Cheng G, Xue Q, Xu H. N/S-Co-doped carbon dot–based FRET ratiometric fluorescence aptasensing platform modulated with entropy-driven DNA amplifier for ochratoxin A detection. Anal Bioanal Chem. 2023;415:4649–60.

    Article  PubMed  CAS  Google Scholar 

  25. Dong X, Ong SY, Zhang C, Chen W, Du S, Xiao Q, Gao L, Yao SQ. Broad-spectrum polymeric nanoquencher as an efficient fluorescence sensing platform for biomolecular detection. ACS Sens. 2021;6:3102–11.

    Article  PubMed  CAS  Google Scholar 

  26. Jia Y, Han J, Wang H, Hong W, Wang H, Zhang M, Li Z. Ultrasensitive quantification of multiplexed mRNA variants via splice-junction anchored DNA probes and SplintR ligase-initiated PCR. Chem Commun. 2021;57:10011–4.

    Article  CAS  Google Scholar 

  27. Li H, Warden AR, Su W, He J, Zhi X, Wang K, Zhu L, Shen G, Ding X. Highly sensitive and portable mRNA detection platform for early cancer detection. J Nanobiotechnol. 2021;19:1–10.

    Google Scholar 

  28. He S, Zhao X, Chen F, Chen C, Gong H, Cai C. Detection of long mRNA sequences by a Y-shaped DNA probe with three target-binding segments. Anal Chim Acta. 2023;1277: 341633.

    Article  PubMed  CAS  Google Scholar 

  29. Moon J, Lim J, Lee S, Son HY, Rho HW, Kim H, Kang H, Jeong J, Lim EK, Jung J, Huh YM, Park HG, Kang T. Urinary exosomal mRNA detection using novel isothermal gene amplification method based on three-way junction. Biosens Bioelectron. 2020;167: 112474.

    Article  PubMed  CAS  Google Scholar 

  30. Lin Q, Ye X, Huang Z, Yang B, Fang X, Chen H, Kong J. Graphene oxide-based suppression of nonspecificity in loop-mediated isothermal amplification enabling the sensitive detection of cyclooxygenase-2 mRNA in colorectal cancer. Anal Chem. 2019;91:15694–702.

    Article  PubMed  CAS  Google Scholar 

  31. Yin P, Choi HM, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature. 2008;451:318–22.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115:12491–545.

    Article  PubMed  CAS  Google Scholar 

  33. Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of catalytic hairpin assembly reaction in biosensing. Small. 2019;15:1902989.

    Article  CAS  Google Scholar 

  34. Dong Z, Gao D, Li Y, An K, Ni J, Meng L, Wu H. Self-assembled DNA nanoparticles enable cascade circuits for mRNA detection and imaging in living cells. Anal Chim Acta. 2023;1249: 340934.

    Article  PubMed  CAS  Google Scholar 

  35. Han Y, Hu H, Yu L, Zeng S, Min JZ, Cai S. A duplex-specific nuclease (DSN) and catalytic hairpin assembly (CHA)-mediated dual amplification method for miR-146b detection. Analyst. 2023;148:556–61.

    Article  PubMed  CAS  Google Scholar 

  36. Shin J, Kang N, Kim B, Hong H, Yu L, Kim J, Kang H, Kim JS. One-dimensional nanomaterials for cancer therapy and diagnosis. Chem Soc Rev. 2023;52:4488–514.

    Article  PubMed  CAS  Google Scholar 

  37. Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic medicine. Adv Funct Mater. 2022;32:2204791.

    Article  CAS  Google Scholar 

  38. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJ, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14:1007–17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Fang L, Shi M, Huang Y, Yao L, Zhao S, Zhang L, Liang H. A peptide-based four-color fluorescent polydopamine nanoprobe for multiplexed sensing and imaging of proteases in living cells. Chem Commun. 2019;55:1651–4.

    Article  CAS  Google Scholar 

  40. Mao W, Hu C, Zheng H, Xie J, Shi X, Du Y, Wang F. A functionalized polydopamine theranostic nanoprobe for efficient imaging of miRNA-21 and in vivo synergetic cancer therapy. Mol Ther-Nucl Acids. 2020;22:27–37.

    Article  CAS  Google Scholar 

  41. Yao Y, Zhao D, Li N, Shen F, Machuki JOA, Yang D, Li J, Tang D, Yu Y, Tian J, Dong H, Gao F. Multifunctional Fe3O4@polydopamine@DNA-fueled molecular machine for magnetically targeted intracellular Zn2+ imaging and fluorescence/MRI guided photodynamic-photothermal therapy. Anal Chem. 2019;91:7850–7.

    Article  PubMed  CAS  Google Scholar 

  42. Qiu H, Wang J, Zhi Y, Yan B, Huang Y, Li J, Shen C, Dai L, Fang Q, Shi C, Li W. Hyaluronic acid-conjugated fluorescent probe-shielded polydopamine nanomedicines for targeted imaging and chemotherapy of bladder cancer. ACS Appl Mater Interfaces. 2023;15:40.

    Article  Google Scholar 

  43. Sun P, Li Z, Zhang D, Zeng W, Zheng Y, Mei L, Chen H, Gao N, Zeng X. Multifunctional biodegradable nanoplatform based on oxaliplatin prodrug cross-linked mesoporous polydopamine for enhancing cancer synergetic therapy. Chinese Chem Lett. 2023;35: 108346.

    Article  Google Scholar 

  44. Xue C, Li M, Liu C, Li Y, Fei Y, Hu Y, Cai K, Zhao Y, Luo Z. NIR-actuated remote activation of ferroptosis in target tumor cells through a photothermally responsive iron-chelated biopolymer nanoplatform. Angew Chem Int Edit. 2021;60:8938–47.

    Article  CAS  Google Scholar 

  45. He P, Han W, Bi C, Song W, Niu S, Zhou H, Zhang X. Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular microRNA and multimodal synergetic cancer therapy. ACS Nano. 2021;15:6961–76.

    Article  PubMed  CAS  Google Scholar 

  46. Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. Nanoscale. 2021;13:6439–46.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Pang X, Wang J, Cheng Y, Song Y, Sun Q, You Q, Tan F, Li J, Li N. Magnetically-targeted and near infrared fluorescence/magnetic resonance/photoacoustic imaging-guided combinational anti-tumor phototherapy based on polydopamine-capped magnetic Prussian blue nanoparticles. J Mater Chem B. 2018;6:2460–73.

    Article  PubMed  Google Scholar 

  48. Ni Z, Zhang D, Zhen S, Liang X, Gong X, Zhao Z, Ding D, Feng G, Tang BZ. NIR light-driven pure organic janus-like nanoparticles for thermophoresis-enhanced photothermal therap. Biomaterials. 2023;301: 122261.

    Article  PubMed  CAS  Google Scholar 

  49. An D, Fu J, Zhang B, Xie N, Nie G, Ågren H, Qiu M, Zhang H. NIR-II responsive inorganic 2D nanomaterials for cancer photothermal therapy: recent advances and future challenges. Adv Funct Mater. 2021;31:2101625.

    Article  CAS  Google Scholar 

  50. Cao H, Yang Y, Liang M, Ma Y, Sun N, Gao X, Li J. Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy. Chem Commun. 2021;57:255–8.

    Article  CAS  Google Scholar 

  51. Song H, Yu M, Lu Y, Gu Z, Yang Y, Zhang M, Fu Z, Yu C. Plasmid DNA delivery: nanotopography matters. J Am Chem Soc. 2017;139:18247–54.

    Article  PubMed  CAS  Google Scholar 

  52. Liu L, Yang Z, Liu C, Wang M, Chen X. Preparation of PEI-modified nanoparticles by dopamine self-polymerization for efficient DNA delivery. Biotechnol Appl Bioc. 2023;70:824–34.

    Article  CAS  Google Scholar 

  53. Dai G, Choi CKK, Choi CHJ, Fong WP, Ng DK. Glutathione-degradable polydopamine nanoparticles as a versatile platform for fabrication of advanced photosensitisers for anticancer therapy. Biomater Sci-Uk. 2022;10:189–201.

    Article  Google Scholar 

  54. Qiang W, Li W, Li X, Chen X, Xu D. Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci. 2014;5:3018–24.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundations of China (22064002, 22364021), the Natural Science Foundation of Guangxi Province (2020GXNSFAA159072), the PhD Research Startup Program of Yulin Normal University (G2023Zk04), and the Guangxi University Students Innovative Project (S202310606116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulong Wang, Zhihui Luo or Yong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5.41 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhong, X., Fan, M. et al. Enhancing intracellular mRNA precise imaging-guided photothermal therapy with a nucleic acid-based polydopamine nanoprobe. Anal Bioanal Chem 416, 849–859 (2024). https://doi.org/10.1007/s00216-023-05062-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05062-2

Keywords

Navigation