Skip to main content

Advertisement

Log in

Multi-target responsive nanoprobe with cellular-level accuracy for spatiotemporally selective photodynamic therapy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Photodynamic therapy is known for its non-invasiveness to significantly reduce undesired side effects on patients. However, the infiltration and invasiveness of tumor growth are still beyond the specificity of traditional light-controlled photodynamic therapy (PDT), which lacks cellular-level accuracy to tumor cells, possibly leading to “off-target” damage to healthy tissues such as the skin or immune cells infiltrated. Here, upconversion nanoparticles (UCNPs) were co-encapsulated with manganese dioxide (MnO2) by amphiphilic polymers poly(styrene-co-methyl acrylate) (PSMA) and further coated with photosensitizer (riboflavin)-loaded mesoporous silica (C@S/V). The C@S/V nanoprobes exhibited shielded upconversion luminescence in normal conditions (pH 7.4, no hydroperoxide (H2O2)) under 980-nm irradiation and thus minimal reactive oxygen production from riboflavin. However, the excess H2O2 (1 mM) and acidic environment (pH 5.5) could decompose the MnO2 within the C@S/V, resulting in remarkable enhancement of upconversion luminescence and a favorable hypoxia-relieving condition for PDT, providing a spatiotemporal signal for therapy initiation. The C@S/V nanoprobes were applied to the co-culture of normal cells (HEK293) and pancreatic cancer cells (Panc02) and performed a selective killing on Panc02 under the 980-nm irradiation. By using the “double-safety” strategy, a responsive C@S/V nanoprobe was designed by the selective activation of acidic and H2O2-rich conditions and 980-nm irradiation for spatiotemporally selective photodynamic therapy with cellular-level accuracy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data in this work are available from the corresponding author upon reasonable request.

References

  1. Lee D, Shin J, Son H, Cheon SY, Lee Y, Park J, Koo H (2023) Nanoscale Adv 5:1600–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen HR, Wu FX, Xie XY, Wang W, Li QQ, Tu LP, Li B, Kong XG, Chang YL (2021) ACS Nano 15:20643–20655

    CAS  PubMed  Google Scholar 

  3. Chi SY, Zuo MM, Zhu MT, Wang ZJ, Liu ZH (2022) ACS Appl Mater Interfaces 14:28671–28682

    CAS  PubMed  Google Scholar 

  4. Yang YL, Chen R, Gong Y, Yang WH, Li K, Fan WZ, Gou SQ, Gao PF, He TT, Cai KY (2022) Biomaterials 287:121607

    CAS  PubMed  Google Scholar 

  5. Chen M, Sun Y, Liu H (2023) Interdiscip Med 1:e20220012

    Google Scholar 

  6. Fang H, Wang X, Lan X, Jiang D (2023) Interdiscip Med 1:e20230002

    Google Scholar 

  7. Hu C, He XQ, Chen YX, Yang XT, Qin L, Lei T, Zhou Y, Gong T, Huang Y, Gao HL (2021) Adv Funct Mater 31:2007149

    CAS  Google Scholar 

  8. Chen X, Zhang Y, Zhang X, Zhang Z, Zhang Y (2021) Microchim Acta 188:349

    CAS  Google Scholar 

  9. Hu XC, Li H, Li RH, Qiang SF, Chen MY, Shi S, Dong CY (2022) Adv Healthc Mater 121:2202245

    Google Scholar 

  10. Li CX, Zhu P, Xiang HJ, Jin YJ, Lu BL, Shen YJ, Wang WP, Huang BJ, Chen Y (2023) Mater Today Bio 18:100513

    CAS  PubMed  Google Scholar 

  11. Sun B, Bte Rahmat JN, Kim HJ, Mahendran R, Esuvaranathan K, Chiong E, Ho JS, Neoh KG, Zhang Y (2022) Adv Sci 9:2200731

    CAS  Google Scholar 

  12. Zhang Z, Jayakumar MKG, Zheng X, Shikha S, Zhang Y, Bansal A, Poon DJJ, Chu PL, Yeo ELL, Chua MLK et al (2019) Nat Commun 10:4586

    PubMed  PubMed Central  Google Scholar 

  13. Liu YL, Liang Y, Lei PP, Zhang Z, Chen YM (2022) Adv Sci 10:2203669

    Google Scholar 

  14. Ho TH, Yang CH, Jiang ZE, Lin HY, Chen YF, Wang TL (2022) Int J Mol Sci 23:8757

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu Q, Wang Z, Bai S, Wang Y, Liao C, Sun Y, Zhang Y, Li W, Mei Q (2023) J Am Chem Soc 145:5941–5951

    CAS  PubMed  Google Scholar 

  16. Fu X, Fu S, Lu Q, Zhang J, Wan P, Liu J, Zhang Y, Chen C-H, Li W, Wang H et al (2022) Nat Commun 13:4741

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen H, Ding BB, Ma PA, Lin J (2022) Adv Drug Deliver Rev 188:114414

    CAS  Google Scholar 

  18. Du KM, Feng J, Gao X, Zhang HJ (2022) Light Sci Appl 11:222

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Han DD, Zhang X, Ma YC, Yang XJ, Li ZH (2023) Mater Today Bio 18:100517

    CAS  PubMed  Google Scholar 

  20. Hu X, Ha E, Ai FJ, Huang XJ, Yan L, He SQ, Ruan SC, Hu JQ (2022) Coordin. Chem Rev 473:214821

    CAS  Google Scholar 

  21. Yan JJ, Chen YB, Luo MH, Hu XY, Li HS, Liu QT, Zou ZZ (2023) J Biomed Sci 30:8

    PubMed  PubMed Central  Google Scholar 

  22. Zhang QF, Kuang GZ, Li WZ, Wang JL, Ren HZ, Zhao YJ (2023) Nano-Micro Lett 15:44

    Google Scholar 

  23. Dong ZL, Yang ZJ, Hao Y, Feng LZ (2019) Nanoscale 11:16164–16186

    CAS  PubMed  Google Scholar 

  24. Zhong S, Chen C, Yang GL, Zhu YC, Cao HL, Xu BJ, Luo YQ, Gao Y, Zhang WA (2019) ACS Appl Mater Interfaces 11:33697–33705

    CAS  PubMed  Google Scholar 

  25. Zhu JZ, Xiao TT, Zhang JL, Che HL, Shi YX, Shi XY, Van Hest JCM (2020) ACS Nano 14:11225–11237

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Han K, Zhang J, Zhang W, Wang S, Xu L, Zhang C, Zhang X, Han H (2017) ACS Nano 11:3178–3188

    CAS  PubMed  Google Scholar 

  27. Yang Z, Chen Q, Chen J, Dong Z, Zhang R, Liu J, Liu Z (2018) Small 14:1803262

    Google Scholar 

  28. Yang Y, Lin Y, Jiang L, Han W, Wang M, Lu C, Yang H (2020) ChemNanoMat 6:1054–1058

    CAS  Google Scholar 

  29. Wang X, Li M, Hou Y, Li Y, Yao X, Xue C, Fei Y, Xiang Y, Cai K, Zhao Y et al (2020) Adv Funct Mater 30:2000229

    CAS  Google Scholar 

  30. Yao C, Li Y, Wang Z, Song C, Hu X, Liu S (2020) ACS Nano 14:1919–1935

    CAS  PubMed  Google Scholar 

  31. Dong X, Mu L-L, Liu X-L, Zhu H, Yang S-C, Lai X, Liu H-J, Feng H-Y, Lu Q, Zhou B-BS et al (2020) Adv Funct Mater 30:2000309

    CAS  Google Scholar 

  32. Zhang N, Zhao F, Zou Q, Li Y, Ma G, Yan X (2016) Small 12:5936–5943

    CAS  PubMed  Google Scholar 

  33. Wang Y, Zhan J, Huang J, Wang X, Chen Z, Yang Z, Li J (2023) Interdiscip Med 1:e20220005

    Google Scholar 

  34. Feng YS, Ding DD, Sun WJ, Qiu YW, Luo L, Shi TH, Meng SS, Chen XY, Chen HM (2019) ACS Appl Mater Interfaces 11:37461–37470

    CAS  PubMed  Google Scholar 

  35. Liu XM, Zhou YL, Xie WW, Liu SJ, Zhao Q, Huang W (2020) Small Methods 4:2000566

    CAS  Google Scholar 

  36. Ding BB, Zheng P, Ma PA, Lin J (2020) Adv Mater 32:1905823

    CAS  Google Scholar 

  37. Wan P, Fu H, Zhang Y, Liao C, Lu Q, Xu H, Mei Q (2023) Anal Bioanal Chem 415:4333–4341

    CAS  PubMed  Google Scholar 

  38. Xue X, Uechi S, Tiwari RN, Duan Z, Liao M, Yoshimura M, Suzuki T, Ohishi Y (2013) Opt Mater Express 3:989–999

    CAS  Google Scholar 

  39. Homann C, Krukewitt L, Frenzel F, Grauel B, Würth C, Resch-Genger U, Haase M (2018) Angew Chem Int Ed 57:8765–8769

    CAS  Google Scholar 

  40. Zhou B, Tang B, Zhang C, Qin C, Gu Z, Ma Y, Zhai T, Yao J (2020) Nat Commun 11:1174

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H et al (2018) Science 359:679–684

    CAS  PubMed  Google Scholar 

  42. Zhou Y, Tao X, Chen G, Lu R, Wang D, Chen M-X, Jin E, Yang J, Liang H-W, Zhao Y et al (2020) Nat Commun 11:5892

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the grants from National Natural Science Foundation of China (22074028), Guangdong Basic and Applied Basic Research Foundation (2023B1515020056, 2022A1515111012), Guangzhou Science and Technology Project (2023B03J1228), the Fundamental Research Funds for the Central Universities of China (21622106), and China Postdoctoral Science Foundation (2023M731314).

Author information

Authors and Affiliations

Authors

Contributions

H. F. and Q. L. contributed equally.

Corresponding authors

Correspondence to Yi Zhang, Huajian Xu, Wangxiang Yan or Qingsong Mei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

604_2023_6022_MOESM1_ESM.docx

Supplementary file1 (DOCX 1100 KB) The Supporting Information is available free of charge on the ACS Publications website. Detailed experiment section; TEM figures of C@S with different ratio of PSMA and TEOS (Figure S1); TEM figures of C@S/V (Figure S2); The FTIR spectra of C@S and C@S/V (Figure S3); The UV-Vis absorbance of riboflavin solutions with different concentrations (Figure S4); The linear fitting curve of riboflavin concentration and UV-Vis absorbance (Figure S5); The upconversion luminescence spectra of C@S and C@S/V under the 980 nm excitation (Figure S6); The luminescence recovery in different timepoints of C@S/V (Figure S7 and Figure S8); TEM figures of UCNP/MnO2 nanoclusters after reaction in acidic H2O2 solutions (Figure S9); The singlet oxygen production of C@S/V under different conditions (Figure S10 and Figure S11) (PDF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Lu, Q., Zhang, Y. et al. Multi-target responsive nanoprobe with cellular-level accuracy for spatiotemporally selective photodynamic therapy. Microchim Acta 190, 448 (2023). https://doi.org/10.1007/s00604-023-06022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06022-4

Keywords

Navigation