Skip to main content
Log in

LAMP assay coupled with a CRISPR/Cas12a system for the rapid and ultrasensitive detection of porcine circovirus-like virus in the field

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A recent outbreak of porcine circovirus-like virus (PCLV), a virus that may be associated with porcine diarrhea, has been reported in swine herds in China. The virus is spreading rapidly, causing huge economic losses to the swine farming industry. To achieve the rapid, inexpensive, and sensitive detection of PCLV, we combined loop-mediated isothermal amplification (LAMP) and the CRISPR/Cas12a system, whose fluorescence intensity readout can detect PCLV ORF4 gene levels as low as 10 copies. To overcome the need for sophisticated equipment, lateral flow strip reading technology was introduced for the first time in a LAMP-Cas12a-based system to detect PCLV. The lateral flow strip (LFS) results were readout by the naked eye, and the method was highly sensitive with a detection limit of 10 copies, with a detection time of about 60 min. In addition, the method is highly specific and has no cross-reactivity with other related viruses. In conclusion, LAMP-CRISPR/Cas12a-based assays have the advantages of rapidity, accuracy, portability, low cost, and visualization of the results. They therefore have great potential, especially for areas where specialized equipment is lacking, and can expect to be an ideal method for early diagnosis and on-site detection of PCLV.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shulman LM, Davidson I. Viruses with circular single-stranded DNA genomes are everywhere! Annual Rev Virolog. 2017;4(1):159–80. https://doi.org/10.1146/annurev-virology-101416-041953.

    Article  CAS  Google Scholar 

  2. Yang K, Zhang M, Liu Q, Cao Y, Zhang W, Liang Y, Song X, Ji K, Shao Y, Qi K, Tu J. Epidemiology and evolution of emerging porcine circovirus-like viruses in pigs with hemorrhagic dysentery and diarrhea symptoms in Central China from 2018 to 2021. Viruses. 2021;13(11) https://doi.org/10.3390/v13112282.

  3. Liu Q, Wang H, Ling Y, Yang SX, Wang XC, Zhou R, Xiao YQ, Chen X, Yang J, Fu WG, Zhang W, Qi GL. Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virology J. 2020;17(1):61. https://doi.org/10.1186/s12985-020-01332-y.

    Article  CAS  Google Scholar 

  4. Abbas A, Taylor LJ, Collman RG, Bushman FD, Ictv Report C. ICTV virus taxonomy profile: Redondoviridae. J Gen Virolog. 2021;102(1) https://doi.org/10.1099/jgv.0.001526.

  5. Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic circular Rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv Virus Res. 2019;103:71–133. https://doi.org/10.1016/bs.aivir.2018.10.001.

    Article  PubMed  CAS  Google Scholar 

  6. Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E. The fecal virome of pigs on a high-density farm. J Virolog. 2011;85(22):11697–708. https://doi.org/10.1128/jvi.05217-11.

    Article  CAS  Google Scholar 

  7. Guo Z, He Q, Tang C, Zhang B, Yue H. Identification and genomic characterization of a novel CRESS DNA virus from a calf with severe hemorrhagic enteritis in China. Virus Res. 2018;255:141–6. https://doi.org/10.1016/j.virusres.2018.07.015.

    Article  PubMed  CAS  Google Scholar 

  8. Meng XJ. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annual Rev Animal Biosci. 2013;1:43–64. https://doi.org/10.1146/annurev-animal-031412-103720.

    Article  CAS  Google Scholar 

  9. Li L, Giannitti F, Low J, Keyes C, Ullmann LS, Deng X, Aleman M, Pesavento PA, Pusterla N, Delwart E. Exploring the virome of diseased horses. J Gen Virol. 2015;96(9):2721–33. https://doi.org/10.1099/vir.0.000199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao G, Vatanen T, Droit L, Park A, Kostic AD, Poon TW, Vlamakis H, Siljander H, Härkönen T, Hämäläinen AM, Peet A, Tillmann V, Ilonen J, Wang D, Knip M, Xavier RJ, Virgin HW. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc National Academy Sci USA. 2017;114(30):E6166–e6175. https://doi.org/10.1073/pnas.1706359114.

    Article  CAS  Google Scholar 

  11. Hu X, Chen Z, Song D, Li Y, Ding Z, Wu X, You H, Wu H. Frequency detection of porcine circovirus-like viruses in pigs with porcine respiratory disease. Veterinary Microbiolog. 2022;275:109581. https://doi.org/10.1016/j.vetmic.2022.109581.

    Article  CAS  Google Scholar 

  12. Ji C, Zeng M, Wei Y, Lv X, Sun Y, Ma J. Genetic characterization of four strains porcine circovirus-like viruses in pigs with diarrhea in Hunan Province of China. Front Microbiolog. 2023;14:1126707. https://doi.org/10.3389/fmicb.2023.1126707.

    Article  Google Scholar 

  13. Liu X, Zhang X, Xu G, Wang Z, Shen H, Lian K, Lin Y, Zheng J, Liang P, Zhang L, Liu Y, Song C. Emergence of porcine circovirus-like viruses associated with porcine diarrheal disease in China. Transbound Emerg Di.s. 2021;68(6):3167–73. https://doi.org/10.1111/tbed.14223.

    Article  CAS  Google Scholar 

  14. Sun W, Wang W, Cao L, Zheng M, Zhuang X, Zhang H, Yu N, Tian M, Lu H, Jin N. Genetic characterization of three porcine circovirus-like viruses in pigs with diarrhoea in China. Transbound Emerg Dis. 2021;68(2):289–95. https://doi.org/10.1111/tbed.13731.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang L, Zhang X, Xu G, Wang L, Liu X, Zhang P, Wang S, Liang T, Wang Z, Liu Y, Xu Z, Li Z, Huang G, Song C. Establishment of a real-time quantitative PCR assay for porcine circovirus-like virus and the first evidence of its spread to Hainan and Jiangxi provinces of China. Front Veterinary Sci. 2022;9:853761. https://doi.org/10.3389/fvets.2022.853761.

    Article  Google Scholar 

  16. Chen Z, Hu X, Wu X, Li Y, Ding Z, Zeng Q, Wan T, Yin J, Wu H. Development and primary application of an indirect ELISA based on Rep protein to analyze antibodies against porcine circovirus-like virus (PCLV). Viruses. 2022;14(7) https://doi.org/10.3390/v14071398.

  17. Bukkitgar SD, Shetti NP, Aminabhavi TM (2021) Electrochemical investigations for COVID-19 detection-a comparison with other viral detection methods. Chemical engineering journal (Lausanne, Switzerland : 1996) 420:127575. https://doi.org/10.1016/j.cej.2020.127575.

  18. Zhang H, Xu Y, Fohlerova Z, Chang H, Iliescu C, Neuzil P. LAMP-on-a-chip: revising microfluidic platforms for loop-mediated DNA amplification. Trends Analytical Chem : TRAC. 2019;113:44–53. https://doi.org/10.1016/j.trac.2019.01.015.

    Article  CAS  Google Scholar 

  19. Xie S, Yuan Y, Chai Y, Yuan R. Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of Nosema bombycis genomic DNA PTP1. Analy Chem. 2015;87(20):10268–74. https://doi.org/10.1021/acs.analchem.5b01858.

    Article  CAS  Google Scholar 

  20. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63. https://doi.org/10.1093/nar/28.12.e63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chen H, Sun C, Wang Y, Gao X, You J, Yu W, Sun N, Yang Y, Li X. Rapid detection of SARS-CoV-2 using duplex reverse transcription-multienzyme isothermal rapid amplification in a point-of-care testing. Front Cell Infect Microbio. 2021;11:678703. https://doi.org/10.3389/fcimb.2021.678703.

    Article  CAS  Google Scholar 

  22. Fan X, Li L, Zhao Y, Liu Y, Liu C, Wang Q, Dong Y, Wang S, Chi T, Song F, Sun C, Wang Y, Ha D, Zhao Y, Bao J, Wu X, Wang Z. Clinical validation of two recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of African swine fever virus. Front Microbio. 2020;11:1696. https://doi.org/10.3389/fmicb.2020.01696.

    Article  Google Scholar 

  23. Chen X, Tan Y, Wang S, Wu X, Liu R, Yang X, Wang Y, Tai J, k;\i S (2021) A CRISPR-Cas12b-based platform for ul5rasensitive, rapid, and highly specific detection of hepatitis B virus genotypes B and C in clinical application. Front bioeng Biotechnol 9:743322. https://doi.org/10.3389/fbioe.2021.743322

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li S, Huang J, Ren L, Jiang W, Wang M, Zhuang L, Zheng Q, Yang R, Zeng Y, Luu LDW, Wang Y, Tai J. A one-step, one-pot CRISPR nucleic acid detection platform (CRISPR-top): application for the diagnosis of COVID-19. Talanta. 2021;233:122591. https://doi.org/10.1016/j.talanta.2021.122591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhu X, Wang X, Li S, Luo W, Zhang X, Wang C, Chen Q, Yu S, Tai J, Wang Y. Rapid, ultrasensitive, and highly specific diagnosis of COVID-19 by CRISPR-based detection. ACS Sensors. 2021;6(3):881–8. https://doi.org/10.1021/acssensors.0c01984.

    Article  PubMed  CAS  Google Scholar 

  26. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (New York, NY). 2018;360(6387):439–44. https://doi.org/10.1126/science.aaq0179.

    Article  CAS  Google Scholar 

  27. Erratum for the Report “CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity” by J. S. Chen, E. Ma, L. B. Harrington, M. Da Costa, X. Tian, J. M. Palefsky, J. A. Doudna (2021). Science (New York, NY) 371 (6531). https://doi.org/10.1126/science.abh0317

Download references

Acknowledgements

We thank International Science Editing (http://www.internationalscienceediting.com ) for editing this manuscript.

Funding

This work was supported financially by the Natural Science Foundation of China (no. 31972642).

Author information

Authors and Affiliations

Authors

Contributions

Zhaorong Yu, Hua Liu, Zhe Chen, and Ying Shao contributed conception and design of the study. Zhaorong Yu wrote the manuscript. Yu Zhang and Zhipeng Wang performed the experiments. Fanyu Cheng and Zhenyu Wang analyzed the data. Jian Tu, Xiangjun Song, and Kezong Qi supervised the study, interpreted the data, and acquired the research funds. All authors read and approved the final manuscript. All authors have declared that no competing interests exist.

Corresponding authors

Correspondence to Xiangjun Song or Kezong Qi.

Ethics declarations

Ethical approval

All animal experiments complied with the ethical standards of Anhui Agricultural University.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Liu, H., Chen, Z. et al. LAMP assay coupled with a CRISPR/Cas12a system for the rapid and ultrasensitive detection of porcine circovirus-like virus in the field. Anal Bioanal Chem 416, 363–372 (2024). https://doi.org/10.1007/s00216-023-05020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05020-y

Keywords

Navigation