Skip to main content

Advertisement

Log in

A mechanoluminescent material, ZnS:Mn,Li, with enhanced brightness for visualizing dental occlusion

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mechanoluminescent materials are characterized by high luminescence intensity, high repeatability, no external voltage activation, and a good linear relationship between stress and mechanoluminescence intensity within a certain range. Therefore, mechanoluminescent materials have attracted increasing attention from researchers in the fields of stress sensing, encryption and anti-counterfeiting, structural health monitoring, energy-saving lighting, intelligent wearable devices, and other fields. In this study, ZnS:Mn powders with different Mn2+ ratios and different ion doping were synthesized by a high-temperature solid-phase reaction, and the synthesis of various materials was characterized. Then, the optimal mechanoluminescence effect of the ZnS:1%Mn,1%Li material was obtained. The photoluminescence intensity of ZnS:1%Mn,1%Li was 16.7 times higher than that of the sample without doping with Li+, and the mechanoluminescence intensity was 1.64 times higher. Finally, polyethylene terephthalate (PET) film was combined with ZnS:Mn,Li mechanoluminescent powders to prepare flexible three-layer composite film. Based on this, a feasible strategy for the detection of temporomandibular disorders was proposed. The composite film is easy to use, economical, and safe, and has good mechanoluminescent performance, which has potential application value in the field of occlusal force detection and visualization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jha P. Chandra, B. P., Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 2014;29(8):977–93.

  2. Chandra BP, Zink JI. Triboluminescence of triclinic crystals. J Luminescence. 1981;23(3):363–72.

    Article  CAS  Google Scholar 

  3. Eddingsaas NC, Suslick KS. Light from sonication of crystal slurries. Nature. 2006;444(7116):163.

    Article  CAS  PubMed  Google Scholar 

  4. Huang Z, Chen B, Ren B, Tu D, Wang Z, Wang C, et al. Smart Mechanoluminescent Phosphors: A Review of Strontium-Aluminate-Based Materials, Properties, and Their Advanced Application Technologies. Adv Sci. 2023;10(3):2204925.

    Article  CAS  Google Scholar 

  5. Chandra BP, Shrivastava KK. Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture. J Phys Chem Solids. 1978;39(9):939–40.

    Article  CAS  Google Scholar 

  6. Li J-A, Zhou J, Mao Z, Xie Z, Yang Z, Xu B, et al. Transient and Persistent Room-Temperature Mechanoluminescence from a White-Light-Emitting AIEgen with Tricolor Emission Switching Triggered by Light. Angewandte Chemie Int Edition. 2018;57(22):6449–53.

    Article  CAS  Google Scholar 

  7. Terasaki N, Fujio Y, Sakata Y, Horiuchi S, Akiyama H. Visualization of crack propagation for assisting double cantilever beam test through mechanoluminescence. J Adhesion. 2018;94(11):867–79.

    Article  CAS  Google Scholar 

  8. Qiu G, Fang H, Wang X, Li Y. Largely enhanced mechanoluminescence properties in Pr3+/Gd3+ co-doped LiNbO3 phosphors. Ceramics Int. 2018;44(13):15411–7.

    Article  CAS  Google Scholar 

  9. Chandra VK, Chandra BP, Jha P. Self-recovery of mechanoluminescence in ZnS:Cu and ZnS:Mn phosphors by trapping of drifting charge carriers. Appl Phys Lett. 2013;103(16):161113.

  10. Xu CN, Watanabe T, Akiyama M, Zheng XG. Direct view of stress distribution in solid by mechanoluminescence. Appl Phys Lett. 1999;74(17):2414–6.

    Article  CAS  Google Scholar 

  11. Feng A, Smet PF. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials. 2018;11(4):484.

  12. Zhou T, Zhao Y, Chen H, Du X, Chen W, Dong Z, et al. Self-recoverable near-infrared mechanoluminescence from ZnS:Mn by controlling manganese clusterization. Mater Design. 2022;224:111407.

    Article  CAS  Google Scholar 

  13. Zhou Z, Liu K, Ban Z, Yuan W. Highly adhesive, self-healing, anti-freezing and anti-drying organohydrogel with self-power and mechanoluminescence for multifunctional flexible sensor. Composites Part A: Appl Sci Manuf. 2022;154:106806.

    Article  CAS  Google Scholar 

  14. Cui J, Yu J, Liu C, Bu Y, Wang X. A dual-response flexible capacitive pressure sensor based on ZnS:Cu2+. J Mater Sci: Mater Electron. 2022;33(32):24794–802.

    CAS  Google Scholar 

  15. Ji H, Tang Y, Shen B, Qian X, Cai Z, Li F, et al. Skin-Driven Ultrasensitive Mechanoluminescence Sensor Inspired by Spider Leg Joint Slits. ACS Appl Mater Interfaces. 2021;13(50):60689–96.

    Article  CAS  PubMed  Google Scholar 

  16. Qian X, Cai Z, Su M, Li F, Fang W, Li Y, et al. Printable Skin-Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Adv Mater. 2018;30(25):1800291.

    Article  Google Scholar 

  17. Zhao J, Song S, Mu X, Jeong SM, Bae J. Programming mechanoluminescent behaviors of 3D printed cellular structures. Nano Energy. 2022;103:107825.

    Article  CAS  Google Scholar 

  18. Listyawan MA, Song H, Hwang G-T, Song H-C, Ryu J. Effect of ZnS:Cu powder content on the mechanoluminescence intensity of stretchable elastomer composite for wearable device applications. J Alloys Compounds. 2022;923:166250.

    Article  CAS  Google Scholar 

  19. Chang S, Deng Y, Li N, Wang L, Shan C-X, Dong L. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Res. 2023;16(7):9379–86.

  20. Park H-J, Kim S, Lee JH, Kim HT, Seung W, Son Y, et al. Self-Powered Motion-Driven Triboelectric Electroluminescence Textile System. ACS Appl Mater Interfaces. 2019;11(5):5200–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Hu H, Zhu D, Pan C. Mechanoluminescence-powered bite-controlled human–machine interface. Sci Bull. 2023;68(6):559–61.

    Article  Google Scholar 

  22. Ma R, Wang C, Yan W, Sun M, Zhao J, Zheng Y, et al. Interface synergistic effects induced multi-mode luminescence. Nano Res. 2022;15(5):4457–65.

    Article  CAS  Google Scholar 

  23. Yin J, Huo X, Cao X, Li R, Zhou Y, Jiang T, et al. Intelligent Electronic Password Locker Based on the Mechanoluminescence Effect for Smart Home. ACS Mater Lett. 2023;5(1):11–8.

    Article  Google Scholar 

  24. Jeong SM, Song S, Joo K-I, Kim J, Hwang S-H, Jeong J, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ Sci. 2014;7(10):3338–46.

    Article  CAS  Google Scholar 

  25. Listyawan MA, Song H, Jung JY, Shin J, Hwang G-T, Song H-C, et al. Magnetically driven powerless lighting device with kirigami structured magneto–mechanoluminescence composite. Adv Sci. 2023;n/a(n/a):2207722.

  26. Moleirinho-Alves P, Benzinho T, Paço M. Effects of therapeutic exercise in TMDs with pain. Annals Med. 2019;51(sup1):225.

    Article  Google Scholar 

  27. Ferrillo M, Marotta N, Giudice A, Calafiore D, Curci C, Fortunato L, et al. Effects of occlusal splints on spinal posture in patients with temporomandibular disorders: a systematic review. Healthcare. 2022;10(4):739.

  28. Wang J, Chao Y, Wan Q, Zhu Z. The possible role of estrogen in the incidence of temporomandibular disorders. Med Hypotheses. 2008;71(4):564–7.

    Article  CAS  PubMed  Google Scholar 

  29. Su N, Lobbezoo F, van Wijk A, van der Heijden GJMG, Visscher CM. Associations of pain intensity and pain-related disability with psychological and socio-demographic factors in patients with temporomandibular disorders: a cross-sectional study at a specialised dental clinic. J Oral Rehab 2017;44(3):187–96.

  30. Starr CL, McGrew C. TMJ disorders in athletes. Curr Sports Med Rep. 2023;22(1):10–4.

  31. Jochum H, Baumgartner-Gruber A, Brand S, Zeilhofer HF, Keel P, Leiggener CS. Chronische Kiefer- und Gesichtsschmerzen. Der Schmerz. 2015;29(3):285–92.

    Article  CAS  PubMed  Google Scholar 

  32. Hilgenberg PB, Saldanha ADD, Cunha CO, Rubo JH, Conti PCR. Temporomandibular disorders, otologic symptoms and depression levels in tinnitus patients. J Oral Rehabil. 2012;39(4):239–44.

    Article  CAS  PubMed  Google Scholar 

  33. Van Selms MKA, Lobbezoo F, Visscher CM, Naeije M. Myofascial temporomandibular disorder pain, parafunctions and psychological stress. J Oral Rehabil. 2008;35(1):45–52.

    Article  PubMed  Google Scholar 

  34. Kijak E, Szczepek AJ, Margielewicz J. Association between Anatomical Features of Petrotympanic Fissure and Tinnitus in Patients with Temporomandibular Joint Disorder Using CBCT Imaging: An Exploratory Study. Pain Res Manag. 2020;2020:1202751.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karpuz S, Yılmaz R, Yılmaz H. Evaluation of temporomandibular joint dysfunction in traumatic brain injury patients. J Oral Rehabil. 2023;50(6):476–81.

    Article  CAS  PubMed  Google Scholar 

  36. Ananthan S, Pertes RA, Bender SD. Biomechanics and Derangements of the Temporomandibular Joint. Dental Clin North Am. 2023;67(2):243–57.

    Article  Google Scholar 

  37. Manfredini D, Thomas DC, Lobbezoo F. Temporomandibular Disorders Within the Context of Sleep Disorders. Dental Clin North Am. 2023;67(2):323–34.

    Article  Google Scholar 

  38. Thomas DC, Khan J, Manfredini D, Ailani J. Temporomandibular Joint Disorder Comorbidities. Dental Clin North Am. 2023;67(2):379–92.

    Article  Google Scholar 

  39. Uehara LM, Tardelli JDC, Botelho AL, Valente MLdC, dos Reis AC. Association between depression and temporomandibular dysfunction in adults - a systematic review. Cranio J Craniomandib Pract. 2023;1–7.

  40. Beynon AM, Hebert JJ, Hodgetts CJ, Boulos LM, Walker BF. Chronic physical illnesses, mental health disorders, and psychological features as potential risk factors for back pain from childhood to young adulthood: a systematic review with meta-analysis. Eur Spine J. 2020;29(3):480–96.

    Article  PubMed  Google Scholar 

  41. Szaflarski M, Cubbins LA, Meganathan K. Anxiety Disorders among US Immigrants: The Role of Immigrant Background and Social-Psychological Factors. Issues Mental Health Nurs. 2017;38(4):317–26.

    Article  Google Scholar 

  42. Han Y, Bai Y, Bian J, Guo X, Liu B, Wang Z. Polydimethylsiloxane-Based Mechanoluminescent Occlusal Splint with the Visualization of Occlusal Force. ACS Appl Polym Mater. 2021;3(10):5180–7.

    Article  CAS  Google Scholar 

  43. Majithia IP, Arora V, Anil Kumar S, Saxena V, Mittal M. Comparison of articulating paper markings and T Scan III recordings to evaluate occlusal force in normal and rehabilitated maxillofacial trauma patients. Med J Armed Forces India. 2015;71:S382–S8.

    Article  CAS  PubMed  Google Scholar 

  44. Deepika BA, Ramamurthy J. Evaluation of occlusal pattern in periodontitis patients using T-scan analysis. J Adv Pharmaceut Technol Res. 2022;13(Suppl 1):S265–S71.

    CAS  Google Scholar 

  45. Sharma A, Rahul GR, Poduval ST, Shetty K, Gupta B, Rajora V. History of materials used for recording static and dynamic occlusal contact marks: a literature review. J Clin Exp Dentistry. 2013;5(1):e48–53.

    Article  Google Scholar 

  46. Cao R, Xu H, Lin J, Liu W. Evaluation of the accuracy of T-scan system and Cerec Omnicam system used in occlusal contact assessment. Heliyon. 2023;9(2):e13476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang N, Pu M, Ma Z, Feng Y, Guo Y, Guo W, et al. Control of triboelectricity by mechanoluminescence in ZnS/Mn-containing polymer films. Nano Energy. 2021;90:106646.

    Article  CAS  Google Scholar 

  48. Zhuang Y, Xie R-J. Mechanoluminescence Rebrightening the Prospects of Stress Sensing: A Review. Adv Mater. 2021;33(50):2005925.

    Article  CAS  Google Scholar 

  49. Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, et al. Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Adv Mater. 2015;27(14):2324–31.

    Article  CAS  PubMed  Google Scholar 

  50. Biswas S, Kar S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotech. 2008;19(4):045710.

    Article  Google Scholar 

  51. Deng Y, Wei J, Sun J, Zhang Y, Dong L, Shan C-X. Enhancing the mechanoluminescence of traditional ZnS:Mn phosphors via Li+ Co-doping. J Luminescence. 2020;225:117364.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Researchers Supporting Project (Number: RSP2023R365), King Saud University, Riyadh, Saudi Arabia.

Funding

This research was supported by the Key Research and Development Program of Shaanxi (Program No. 2023-YBSF-479) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Z. Wang, S. Zhao, and Y. Wang synthesized the material and conducted the experiments. Z. Wang wrote the manuscript. F. Wang provided the clinical guidance. A. Ansari revised the manuscript. R. Lv provided guidance and reviewed the manuscript.

Corresponding author

Correspondence to Ruichan Lv.

Ethics declarations

Ethical approval

Ethics approval was provided by the Pharmacy’s Ethics Committee of The Fourth Military Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection Luminescent Nanomaterials for Biosensing and Bioimaging with guest editors Li Shang, Chih-Ching Huang, and Xavier Le Guével.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.00 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, S., Wang, Y. et al. A mechanoluminescent material, ZnS:Mn,Li, with enhanced brightness for visualizing dental occlusion. Anal Bioanal Chem (2023). https://doi.org/10.1007/s00216-023-04968-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-023-04968-1

Keywords

Navigation