Skip to main content
Log in

Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)–based hairpin DNA fluorescent assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) sensing strategies employing rolling circle amplification (RCA) coupled with the hairpin DNA (HD) probe–mediated FRET assay have shown promise, but achieving rapid, sensitive, and specific detection of target miRNA remains a challenge in clinical diagnostics. Herein, we incorporate PstI endonuclease cleavage (PEC) into a conventional RCA-based HD probe FRET assay to develop an effective and feasible method. Long single-stranded RCA products are synthesized from miRNA-21 loaded on a circular dumbbell DNA, and the resultant RCA products self-assemble to generate long HD structures with double-stranded stem regions that are specifically recognized and cleaved by PstI endonucleases when incubated with PstI enzymes. This releases large amounts of short single-stranded DNA fragments that hybridize and open to the complementary loop-stem regions of HD probes labeled with FAM at one end and BHQ-1 at the other, resulting in a reduction in FRET efficiency. This assay achieves a 39.7 aM detection limit for target miRNA-21, approximately 37-fold higher than that of the conventional assay (1.5 fM). Moreover, quantitative detection is possible in a wide range from 1 aM to 1 pM within 90 min with high sequence specificity. We demonstrate the assay with the detection of target miRNA-21 in total RNA extracted from MCF-7 cancer cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ozdogan S, Yaltirik CK, Yilmaz SG, Akdeniz FT, Sumerkent K, Ali HD, Ture U, Isbir T. Investigation of the effects of MicroRNA-221 expression levels in glioblastoma multiforme tumors. Anticancer Res. 2020;40:3265–70.

    Article  CAS  PubMed  Google Scholar 

  2. Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbaksh E, Vlassov A, Grimmond SM, Cloonan N. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol. 2014;15:R51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  Google Scholar 

  4. Kakumani PK, Ponia SS, Rajgokul KS, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol. 2013;87:8870–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Otmani K, Lewalle P. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front Oncol. 2021;11:708765.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao Q, Chen S, Zhu Z, Yu L, Ren Y, Jiang M, Weng J, Li B. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis. 2018;9:1157.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu T, Liu D, Guan S, Dong M. Diagnostic role of circulating miR-21 in colorectal cancer: a update meta-analysis. Ann Med. 2021;53:87–102.

    Article  CAS  PubMed  Google Scholar 

  9. Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol Clin Oncol. 2020;14:31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: biomarkers of disease. Clin Chim Acta. 2021;516:46–54.

    Article  CAS  PubMed  Google Scholar 

  11. Rana S, Valbuena GN, Curry E, Bevan CL, Keun HC. MicroRNA as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer. 2022;126:502–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porzycki P, Ciszkowicz E, Semik M, Tyrka M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int Urol Nephrol. 2018;50:1619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu H, Yang F, Liu B, Zhang K, Cao Y, Dai W, Li W, Dong H. Intracellular low-abundance microRNA imaging by a NIR-assisted entropy-driven DNA system. Nanoscale Horiz. 2018;4:472–9.

    Article  PubMed  Google Scholar 

  14. Jacroux T, Rieck DC, Cui R, Ouyang Y, Dong WJ. Enzymatic amplification of DNA/RNA hybrid molecular beacon signaling in nucleic acid detection. Anal Biochem. 2013;432:106–14.

    Article  CAS  PubMed  Google Scholar 

  15. Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011;11:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asa TA, Kumara GSR, Seo YJ. Highly sensitive, selective, and rapid detection of miRNA-21 using an RCA/G-quadruplex/QnDESA probing system. Anal Methods. 2022;14:97–100.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang K, Zhang H, Cao H, Jiang Y, Mao K, Yang Z. Rolling circle amplification as an efficient analytical tool for rapid detection of contaminants in aqueous environments. Biosensors-Basel. 2021;11:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. James AM, Baker MB, Bao G, Searles CD. MicroRNA detection using a double molecular beacon approach: distinguishing between miRNA and pre-miRNA. Theranostics. 2017;7:634–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petralia S, Conoci S. PCR technologies for point of care testing: progress and perspectives. ACS Sens. 2017;2:876–91.

    Article  CAS  PubMed  Google Scholar 

  20. Deng S, Hoog GS, Pan W, Chen M, van den Ende AHG, Yang L, Sun J, Najafzadeh MJ, Liao W, Li R. Three isothermal amplification techniques for rapid identification of cladophialophora carrionii, an agent of human chromoblastomycosis. J Clin Microbiol. 2014;52:3531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Yu X, Wang X, Suzuki M, Asanuma H, Dong P, Wu W, Liang X. Highly specific DNA detection from massive background nucleic acids based on rolling circle amplification of target dsDNA. RSC Adv. 2014;4:38293–9.

    Article  CAS  Google Scholar 

  22. Gao Z, Wu C, Lv S, Wang C, Zhang N, Xiao S, Han Y, Xu H, Zhang Y, Li F, Lyu J, Shen Z. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Anal Bioanal Chem. 2018;410:6819–26.

    Article  CAS  PubMed  Google Scholar 

  23. Hong CA, Jang B, Jeong EH, Jeong H, Lee H. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates. Chem Commun. 2014;50:13049–51.

    Article  CAS  Google Scholar 

  24. Yao C, Zhang R, Tang J, Yang D. Rolling circle amplification (RCA)-based DNA hydrogel. Nature. 2021;16:5460–83.

    CAS  Google Scholar 

  25. Zhang B, Li S, Guan Y, Yuan Y. Accurate detection of target microRNA in mixed species of high sequence homology using target-protection rolling circle amplification. ACS Omega. 2021;6:1516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang C, Ouyang P, Yang Y, Qing Y, Han J, Shang W, Chen Y, Du J. MiRNA detection using a rolling circle amplification and RNA-cutting allosteric deoxyribozyme dual signal amplification strategy. Biosensors-Basel. 2021;11:222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Li S, Zhang L, Zhao Q, Li N, Wu Y. Catalytic hairpin assembly-assisted rolling circle amplification for high-sensitive telomerase activity detection. ACS Omega. 2020;5:11836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu H, Zhang Y, Zhang S, Sun M, Li W, Jiang Y, Wu ZS. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Anal Chim Acta. 2018;1047:172–8.

    Article  PubMed  Google Scholar 

  29. Lee H, Kim DM, Kim DE. Label-free fluorometric detection of influenza viral RNA by strand displacement coupled with rolling circle amplification. Analyst. 2020;145:8002–7.

    Article  CAS  Google Scholar 

  30. Xiao F, Liu J, Guo Q, Du Z, Li H, Sun C, Du W. Dual-signal amplification strategy sensitive microRNA detection based on rolling circle amplification and enzymatic repairing amplification. ACS Omega. 2020;5:32738–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui L, Zhu Z, Lin N, Zhang H, Guan Z, Yang CJ. A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: a dual-amplification strategy for sensitive and selective microRNA detection. Chem Commun. 2014;50:1576–8.

    Article  CAS  Google Scholar 

  32. Zhu J, Kempenaers W, Straeten D, Contreras R, Fiers W. A method for fast and pure DNA elution from agarose gels by centrifugal filtration. Nature. 1985;3:1014–6.

    CAS  Google Scholar 

Download references

Funding

This work was supported by a Yeungnam University Research Grant (219A580020).

Author information

Authors and Affiliations

Authors

Contributions

Yun Jin Lee and Ji Yun Jeong: conceptualization; methodology; investigation; validation; and writing—original draft preparation. Ji Yoon Do: methodology, validation, and resources. Cheol Am Hong: supervision; project administration; conceptualization; methodology; funding acquisition; and writing—reviewing and editing.

Corresponding author

Correspondence to Cheol Am Hong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.J., Jeong, J.Y., Do, J.Y. et al. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)–based hairpin DNA fluorescent assay. Anal Bioanal Chem 415, 1991–1999 (2023). https://doi.org/10.1007/s00216-023-04618-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04618-6

Keywords

Navigation