Skip to main content
Log in

Surface functionalization modification of ultra-hydrophilic magnetic spheres with mesoporous silica for specific identification of glycopeptides in serum exosomes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Protein glycosylation of human serum exosomes can reveal significant physiological information, and the development of large-scale identification strategies is crucial for the in-depth investigation of the serum exosome glycoproteome. In this study, using surface functionalization techniques, an ultra-hydrophilic mesoporous silica magnetic nanosphere (denoted as Fe3O4-CG@mSiO2) was synthesized for the quick and accurate detection of glycopeptides from HRP digests. The Fe3O4-CG@mSiO2 nanospheres demonstrated outstanding enrichment capability, high sensitivity (5 amol/μL), good size exclusion effect (HRP digests/BSA proteins, 1:10,000), stable reusability (at least 10 times), and an excellent recovery rate (108.6 ± 5.5%). Additionally, after enrichment by Fe3O4-CG@mSiO2, 156 glycopeptides assigned to 64 proteins derived from human serum exosomes were successfully identified, which demonstrates that the nanospheres have great potential for the research of the large-scale serum exosome glycoproteome.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen IH, Xue L, Hsu CC, Paez JS, Pan L, Andaluz H, Wendt MK, Iliuk AB, Zhu JK, Tao WA. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci USA. 2017;114(12):3175–80. https://doi.org/10.1073/pnas.1618088114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao YM, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9(20):4632–41. https://doi.org/10.1002/pmic.200900398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith LM, Kelleher NL. Proteoforms as the next proteomics currency. Science. 2018;359(6380):1106–7. https://doi.org/10.1126/science.aat1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qing GY, Yan JY, He XN, Li XL, Liang XM. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trac-trends Anal Chem. 2020;124:115570–82. https://doi.org/10.1016/j.trac.2019.06.020

    Article  CAS  Google Scholar 

  6. Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst. 2014;139(4):688–704. https://doi.org/10.1039/c3an01813j

    Article  CAS  PubMed  Google Scholar 

  7. Chen YJ, Xiong ZC, Zhang LY, Zhao JY, Zhang QQ, Peng L, Zhang WB, Ye ML, Zou HF. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale. 2015;7(7):3100–8. https://doi.org/10.1039/c4nr05955g

    Article  CAS  PubMed  Google Scholar 

  8. Zhang YY, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–94. https://doi.org/10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao CH, Bai J, He YT, Zheng Q, Ma WD, Lei ZX, Zhang MY, Wu J, Fu FF, Lin Z. Postsynthetic functionalization of Zr4+-immobilized core-shell structured magnetic covalent organic frameworks for selective enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2019;11(14):13735–41. https://doi.org/10.1021/acsami.9b03330

    Article  CAS  PubMed  Google Scholar 

  10. Novotny MV, Alley WR. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol. 2013;17(5):832–40. https://doi.org/10.1016/j.cbpa.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  11. Wang YL, Liu MB, Xie LQ, Fang CY, Xiong HM, Lu HJ. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal Chem. 2014;86(4):2057–64. https://doi.org/10.1021/ac403236q

    Article  CAS  PubMed  Google Scholar 

  12. Yao JZ, Wang JW, Sun NR, Deng CH. One-step functionalization of magnetic nanoparticles with 4-mercaptophenylboronic acid for a highly efficient analysis of N-glycopeptides. Nanoscale. 2017;9(41):16024–9. https://doi.org/10.1039/c7nr04206j

    Article  CAS  PubMed  Google Scholar 

  13. Su P, Wang Z, Li X, Li M, Li G, Gong Z, Song JY, Yang Y. Fabrication of magnetic dual-hydrophilic metal organic framework for highly efficient glycopeptide enrichment. Anal Bioanal Chem. 2021;413(21):5267–78. https://doi.org/10.1007/s00216-021-03535-w

    Article  CAS  PubMed  Google Scholar 

  14. Hua SW, Feng QS, Xie ZH, Mao HJ, Zhou YP, Yan YH, Ding CF. Post-synthesis of covalent organic frameworks with dual-hydrophilic groups for specific capture of serum exosomes. J Chromatogr A. 2022;1679:463406. https://doi.org/10.1016/j.chroma.2022.463406

    Article  CAS  PubMed  Google Scholar 

  15. Saleem S, Sajid MS, Hussain D, Jabeen F, Najam-ul-Haq M, Saeed A. Boronic acid functionalized MOFs as HILIC material for N-linked glycopeptide enrichment. Anal Bioanal Chem. 2020;412(7):1509–20. https://doi.org/10.1007/s00216-020-02427-9

    Article  CAS  PubMed  Google Scholar 

  16. Li YL, Deng CH, Sun NR. Hydrophilic probe in mesoporous pore for selective enrichment of endogenous glycopeptides in biological samples. Anal Chim Acta. 2018;1024:84–92. https://doi.org/10.1016/j.aca.2018.04.030

    Article  CAS  PubMed  Google Scholar 

  17. Sun NR, Wu H, Chen HM, Shen XZ, Deng CH. Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun. 2019;55(70):10359–75. https://doi.org/10.1039/c9cc04124a

    Article  CAS  Google Scholar 

  18. Feng XY, Deng CH, Gao MX, Zhang XM. Facile and easily popularized synthesis of l-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Anal Bioanal Chem. 2020;410(3):989–98. https://doi.org/10.1007/s00216-017-0602-5

    Article  CAS  Google Scholar 

  19. Yeh CH, Chen SH, Li DT, Lin HP, Huang HJ, Chang CI, Shih WL, Chern CL, Shi FK, Hsu JL. Magnetic bead-based hydrophilic interaction liquid chromatography for glycopeptide enrichments. J Chromatogr A. 2012;1224:70–8. https://doi.org/10.1016/j.chroma.2011.12.057

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Jing HY, Meng B, Qian XH, Ying WT. L-cysteine functionalized straticulate C3N4 for the selective enrichment of glycopeptides. J Chromatogr A. 2020;1610:460545. https://doi.org/10.1016/j.chroma.2019.460545

    Article  CAS  PubMed  Google Scholar 

  21. Wu WR, Tang RZ, Pan L, Wang CY, Zhang JJ, Ma SJ, Shen YH, Ou JJ. Fabrication of hydrophilic zwitterionic microspheres via inverse suspension polymerization for the enrichment of N-glycopeptides. Microchim Acta. 2021;188(10):348. https://doi.org/10.1007/s00604-021-05010-w

    Article  CAS  Google Scholar 

  22. Li XW, Zhang HY, Zhang N, Ma SJ, Ou JJ, Ye ML. One-step preparation of zwitterionic-rich hydrophilic hydrothermal carbonaceous materials for enrichment of n-glycopeptides. ACS Sustain Chem Eng. 2019;7(13):11511–20. https://doi.org/10.1021/acssuschemeng.9b01382

    Article  CAS  Google Scholar 

  23. Ji YS, Lv RH, Song SH, Huang JF, Zhang LW, Huang G, Li JA, Ou JJ. Facile fabrication of zwitterionic magnetic composites by one-step distillation-precipitation polymerization for highly specific enrichment of glycopeptides. Anal Chim Acta. 2019;1053:43–53. https://doi.org/10.1016/j.aca.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Yi LH, Shao YF, Fu MY, Yan YH, Ding CF, Tang KQ. One-step preparation of magnetic zwitterionic-hydrophilic dual functional nanospheres for in-depth glycopeptides analysis in Alzheimer's disease patients' serum. J Chromatogr A. 2022;1669:462929. https://doi.org/10.1016/j.chroma.2022.462929

    Article  CAS  PubMed  Google Scholar 

  25. Tian Y, Tang RZ, Liu LY, Yu Y, Ma SJ, Gong BL, Ou JJ. Glutathione-modified ordered mesoporous silicas for enrichment of N-linked glycopeptides by hydrophilic interaction chromatography. Talanta. 2020;217:121082. https://doi.org/10.1016/j.talanta.2020.121082

    Article  CAS  PubMed  Google Scholar 

  26. Yan YY, Han RL, Hou YF, Zhang HJ, Yu JC, Gao WQ, Xu L, Tang KQ. Bowl-like mesoporous polydopamine with size exclusion for highly selective recognition of endogenous glycopeptides. Talanta. 2021;233:122468. https://doi.org/10.1016/j.talanta.2021.122468

    Article  CAS  PubMed  Google Scholar 

  27. Zhang QQ, Huang YY, Jiang BY, Hu YJ, Xie JJ, Gao X, Jia B, Shen HL, Zhang WJ, Yang PY. In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides. Anal Chem. 2021;90(12):7357–63. https://doi.org/10.1021/acs.analchem.8b00708

    Article  CAS  Google Scholar 

  28. Kong SY, Zhang QQ, Yang LJ, Huang YY, Liu MQ, Yan GQ, Zhao HH, Wu MX, Zhang XM, Yang PY, Cao WQ. Effective enrichment strategy using boronic acid-functionalized mesoporous graphene-silica composites for intact n- and o-linked glycopeptide analysis in human serum. Anal Chem. 2021;93(17):6682–91. https://doi.org/10.1021/acs.analchem.0c05482

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Y, Pu CL, Zhao HL, Gu QY, Zhu TY, Lan MB. Hydrophilic arginine-functionalized mesoporous polydopamine-graphene oxide composites for glycopeptides analysis. Anal Chem. 2022;1189:123049. https://doi.org/10.1016/j.jchromb.2021.123049

    Article  CAS  Google Scholar 

  30. Wang ZD, Wu RQ, Chen HM, Sun NR, Deng CH. Synthesis of zwitterionic hydrophilic magnetic mesoporous silica materials for endogenous glycopeptide analysis in human saliva. Nanoscale. 2018;10(11):5335–41. https://doi.org/10.1039/c7nr08613j

    Article  CAS  PubMed  Google Scholar 

  31. Chen HM, Li YL, Wu H, Sun NR, Deng CH. Smart hydrophilic modification of magnetic mesoporous silica with zwitterionic l-cysteine for endogenous glycopeptides recognition. ACS Sustain Chem Eng. 2019;7(2):2844–51. https://doi.org/10.1021/acssuschemeng.8b06258

    Article  CAS  Google Scholar 

  32. Li DP, Zhang JH, Xie GS, Ji FF, Shao XJ, Zhu L, Cai ZW. A dual-zwitterion functionalized ultra-hydrophilic metal–organic framework with ingenious synergy for enhanced enrichment of glycopeptides. Chem Commun. 2019;55(93):13967–70. https://doi.org/10.1039/c9cc06785j

    Article  CAS  Google Scholar 

  33. Sun NR, Wang JW, Yao JZ, Deng CH. Hydrophilic mesoporous silica materials for highly specific enrichment of n-linked glycopeptide. Anal Chem. 2017;89(3):1764–71. https://doi.org/10.1021/acs.analchem.6b04054

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Kuang M, Zhang LJ, Yang PY, Lu HJ. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles. Anal Chem. 2013;85(11):5535–41. https://doi.org/10.1021/ac400733y

    Article  CAS  PubMed  Google Scholar 

  35. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed. 2005;44(18):2782–5. https://doi.org/10.1002/anie.200462551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ningbo major science and technology project (2022Z133), the medical health Project of Health Department of Zhejiang Province (2021KY1045), Ningbo public welfare science and technology project (2021S104).

Ethically approved human serum samples used in this research were collected with the consent of volunteers. The study was conducted with the approval of the experimental ethics committee of Ningbo University and its affiliated hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghua Yan or Haijiao Mao.

Ethics declarations

Consent for publication

All of the authors have given approval for the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 581 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Wang, B., Feng, Q. et al. Surface functionalization modification of ultra-hydrophilic magnetic spheres with mesoporous silica for specific identification of glycopeptides in serum exosomes. Anal Bioanal Chem 415, 1741–1749 (2023). https://doi.org/10.1007/s00216-023-04575-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04575-0

Keywords

Navigation