Skip to main content
Log in

Isolation protocols and mitochondrial content for plasma extracellular vesicles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mitochondrial content has been reported outside of cells either within extracellular vesicles (EVs) or as free mitochondria. Mitochondrial EVs can potentially play multiple physiological and pathophysiological roles. To understand their functions, isolation protocols to separate mitochondrial EVs from other mitochondrial content need to be established. In the present work, we use a multiple reaction monitoring assay with isotope labeled internal standards to quantify 11 mitochondrial, 6 plasma membrane-specific, 4 endosomal membrane-specific, and 2 soluble proteins to evaluate the efficiency of chromatographic isolation of mitochondrial EVs. The isolation protocol includes ultracentrifugation, size exclusion chromatography, and chromatography on immobilized heparin. All protein concentrations were normalized to the concentration of ATP synthase alpha subunit to generate a ratio that allows comparison of different samples obtained during the isolation. We have shown that initial samples after ultracentrifugation are contaminated with non-EV mitochondrial content that cannot be separated from EVs using size exclusion chromatography, but can be efficiently separated from EVs on the column with immobilized heparin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu Z, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell & Bioscience. 2022:12–66.

  2. Amari L, Germain M. Mitochondrial extracellular vesicles – origins and roles. Front Mol Neurosci. 2021;14:767219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manickam DS. Delivery of mitochondria via extracellular vesicles – a new horizon in drug delivery. J Control Release. 2022;343:400–7.

    Article  CAS  PubMed  Google Scholar 

  4. Jang SC, Crescitelli R, Cvjetkovic A, Belgrano V, Bagge RO, Sundfeldt K, Ochiya T, Kalluri R, Lotvall J. Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J Extracell Vesicles. 2019;8:1635420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakamya MF, Sil S, Buch S, Hakami RM. Mitochondrial extracellular vesicles in CNS disorders: new frontiers in understanding the neurological disorders of the brain. Front Mol Biosci. 2022;9:840364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yao PJ, Eren E, Goetzl EJ, Kapogiannis D. Mitochondrial electron transport chain protein abnormalities detected in plasma extracellular vesicles in Alzheimer’s disease. Biomedicines. 2021;9:1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Todkar K, Chikhi L, Desjardins V, El-Mortada F, Pepin G, Germain M. Selective packing of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nature Comm. 2021;12:1971.

    Article  CAS  Google Scholar 

  8. Popov LD. Mitochondrial-derived vesicles: recent insights. J Cell Mol Med. 2022;26:3323–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vasam G, Nadcau R, Cadete VJJ, Lavallee-Adam M, Menzies KJ, Burelle Y. Proteomics characterization of mitochondrial-derived vesicles under oxidative stress. FASEB J. 2021;35:e21278.

    Article  CAS  PubMed  Google Scholar 

  10. Stam J, Bartel S, Bischoff R, Wolters JC. Isolation of extracellular vesicles with combined enrichment methods. J Chrom B. 2021;1169:122604.

    Article  CAS  Google Scholar 

  11. Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chrom A. 2021;1636:461773.

    Article  CAS  Google Scholar 

  12. Li J, He X, Deng Y, Yang C. An update on isolation methods for proteomic studies of extracellular vesicles in biofluids. Molecules. 2019;24:3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson L, Hunter CL. Quantitative mass spectrometry multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5:573–88.

    Article  CAS  PubMed  Google Scholar 

  14. Liebler DC, Zimmerman LJ. Targeted quantification of proteins by mass spectrometry. Biochemistry. 2013;52:3797–806.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Turko IV. Trends in QconCATs for targeted proteomics. Trends Anal Chem. 2014;57:1–5.

    Article  Google Scholar 

  16. Wang T, Anderson KW, Turko IV. Assessment of extracellular vesicles purity using proteomic standards. Anal Chem. 2017;89:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang T, Turko IV. Proteomic toolbox to standardize the separation of extracellular vesicles and lipoprotein particles. J Proteome Res. 2018;17:3104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, Parot J, Hackley VA, Turko IV. Quantitative proteomic analysis of biogenesis-based classification for extracellular vesicles. Proteomes. 2020;8:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen A, Wang T, Turko IV. Quantitative proteomic analysis for evaluating affinity isolation of extracellular vesicles. J Proteom. 2021;249:104359.

    Article  CAS  Google Scholar 

  20. Au AE, Josefsson EC. Regulation of platelet membrane protein shedding in health and disease. Platelets. 2017;28:342–53.

    Article  CAS  PubMed  Google Scholar 

  21. Balaj L, Atai NA, Chen W, Mu D, Tannous BA, Breakefied XO, Skog J, Maguire CA. Heparin affinity purification of extracellular vesicles. Sci Rep. 2015;5:10266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tadolini B, Cabrini L, Piccinini G, Davalli PP, Sechi AM. Determination of the polyamine content of rat heart mitochondria by the use of heparin-Sepharose. Appl Biochem Biotechnol. 1985;11:173–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Certain commercial materials, instruments, and equipment are identified in this manuscript in order to specify the experimental procedure as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the materials, instruments, or equipment identified are necessarily the best available for the purpose.

Funding

The research was supported by NIST budget.

Author information

Authors and Affiliations

Authors

Contributions

I.V. Turko designed the research, isolated EVs, and performed MRM experiments. A. Nguyen expressed and purified QconCATs. I.V. Turko and A. Nguyen analyzed results and wrote the paper.

Corresponding author

Correspondence to Illarion V. Turko.

Ethics declarations

Source of biological material

Human plasma K2EDTA was purchased from BioreclamationIVT, Westbury, NY.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in Extracellular Vesicle Analysis with guest editors Lucile Alexandre, Jiashu Sun, Myriam Taverna, and Wenwan Zhong.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A., Turko, I.V. Isolation protocols and mitochondrial content for plasma extracellular vesicles. Anal Bioanal Chem 415, 1299–1304 (2023). https://doi.org/10.1007/s00216-022-04465-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04465-x

Keywords

Navigation