Skip to main content

Advertisement

Log in

Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review discusses the most recent literature (mostly since 2019) on the presence and impact of microplastics (MPs, particle size of 1 μm to 5 mm) and nanoplastics (NPs, particle size of 1 to 1000 nm) throughout the agricultural and food supply chain, focusing on the methods and technologies for the detection and characterization of these materials at key entry points. Methods for the detection of M/NPs include electron and atomic force microscopy, vibrational spectroscopy (FTIR and Raman), hyperspectral (bright field and dark field) and fluorescence imaging, and pyrolysis–gas chromatography coupled to mass spectrometry. Microfluidic biosensors and risk assessment assays of MP/NP for in vitro, in vivo, and in silico models have also been used. Advantages and limitations of each method or approach in specific application scenarios are discussed to highlight the scientific and technological obstacles to be overcome in future research. Although progress in recent years has increased our understanding of the mechanisms and the extent to which MP/NP affects health and the environment, many challenges remain largely due to the lack of standardized and reliable detection and characterization methods. Most of the methods available today are low-throughput, which limits their practical application to food and agricultural samples. Development of rapid and high-throughput field-deployable methods for onsite screening of MP/NPs is therefore a high priority. Based on the current literature, we conclude that detecting the presence and understanding the impact of MP/NP throughout the agricultural and food supply chain require the development of novel deployable analytical methods and sensors, the combination of high-precision lab analysis with rapid onsite screening, and a data hub(s) that hosts and curates data for future analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from Li et al. [55] with permission

Fig. 4

taken from Li et al. [151] with permission

Fig. 5

taken from Huang et al. [164] with permission. (b) Microfluidic pulse sensor for MP detection. The image is taken from Pollard et al. [165] with permission. (c) Sandwich immunoassay-like sensing of NPs on an SPR chip using a peptide receptor. The image is taken from Oh et al. [166] with permission

Fig. 6

Taken from Caldwell et al. [172] with permission

Fig. 7

taken from Facciola et al. [65] with permission. (b) Interaction between 50-nm polystyrene (PS50) nanoplastics and small unilamellar vesicles (SUVs) monitored by QCM-D, image taken from Liu et al. [70] with permission. (c) Immunofluorescence staining of human neuroblastoma cells, image taken from Ban et al. [71] with permission. (d, e) Flow cytometry analysis of the uptake of 25-nm polystyrene nanoplastics by human A549 cells at different times (10, 20, 30, 60, 120 min), image taken from Xu et al. [69] with permission

Similar content being viewed by others

References

  1. Plastics - the Facts 2020. 2020. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/. Accessed 21 April 2022.

  2. Gourmelon G. 2015. http://www.plastic-resource-center.com/wp-content/uploads/2018/11/Global-Plastic-Production-RisesRecycling-Lags.pdf. Accessed 21 April 2022.

  3. Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M, Rio-Echevarria IM, Van den Eede G. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A. 2019;36(5):639–73. https://doi.org/10.1080/19440049.2019.1583381.

    Article  CAS  Google Scholar 

  4. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S. Degradation Rates of Plastics in the Environment. ACS Sustain Chem Eng. 2020;8(9):3494–511. https://doi.org/10.1021/acssuschemeng.9b06635.

    Article  CAS  Google Scholar 

  5. Gómez EF, Michel FC. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym Degrad Stab. 2013;98:2583–91.

    Article  CAS  Google Scholar 

  6. Karamanlioglu M, Robson GD. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab. 2013. https://doi.org/10.1016/j.polymdegradstab.2013.07.004.

    Article  Google Scholar 

  7. Weinstein JE, Crocker BK, Gray AD. From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ Toxicol Chem. 2016;35(7):1632–40. https://doi.org/10.1002/etc.3432.

    Article  CAS  PubMed  Google Scholar 

  8. EFSA, European Food Safety Authority. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14(6):4501. https://doi.org/10.2903/j.efsa.2016.4501.

    Article  CAS  Google Scholar 

  9. Cai H, Xu EG, Du F, Li R, Liu J, Shi H. Analysis of environmental nanoplastics: Progress and challenges. Chem Eng J. 2021;410:128208.

    Article  CAS  Google Scholar 

  10. Hartmann NB, Hüffer T, Thompson RC, Haseellöv M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, Herrling MP, Hess MC, Ivleva NP, Lusher AL, Wagner M. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ Sci Technol. 2019;53(3):1039–47. https://doi.org/10.1021/acs.est.8b05297.

    Article  CAS  PubMed  Google Scholar 

  11. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol. 2008;42(13):5026–31. https://doi.org/10.1021/es800249a.

    Article  CAS  PubMed  Google Scholar 

  12. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol. 2011;2011(45):9175–9. https://doi.org/10.1021/es201811s.

    Article  CAS  Google Scholar 

  13. Engler RE. The Complex Interaction between Marine Debris and Toxic Chemicals in the Ocean. Environ Sci Technol. 2012;46(22):12302–15.

    Article  CAS  PubMed  Google Scholar 

  14. Li WC, Tse HF, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci Total Environ. 2016;566–567:333–49. https://doi.org/10.1016/j.scitotenv.2016.05.084.

    Article  CAS  PubMed  Google Scholar 

  15. Ivleva NP. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem Rev. 2021;121(19):11886–936.

    Article  CAS  PubMed  Google Scholar 

  16. Blevins MG, Allen HL, Colson BC, Cook AM, Greenbaum AZ, Hemami SS, Hollmann J, Kim E, LaRocca AA, Markoski KA, Miraglia P, Mott VL, Robberson WM, Santos JA, Sprachman MM, Swierk P, Tate S, Witinski MF, Kratchman LB, Michel APM. Field-Portable Microplastic Sensing in Aqueous Environments: A Perspective on Emerging Techniques. Sensors. 2021;21(10):3532. https://doi.org/10.3390/s21103532.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kurniawan SB, Said NSM, Imron MF, Abdullah CRS. Microplastic Pollution in the Environment: Insights into Emerging Sources and Potential Threats. Environ Technol Innov. 2021;23(August):101790. https://doi.org/10.1016/j.eti.2021.101790.

    Article  CAS  Google Scholar 

  18. Tympa LE, Katsara K, Moschou PN, Kenanakis G, Papadakis VM. Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials (Basel). 2021;14(9):2329. https://doi.org/10.3390/ma14092329.

    Article  CAS  Google Scholar 

  19. Liu Y, Guo R, Zhang S, Sun Y, Wang F. Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment. J Hazard Mater. 2022;421:126700. https://doi.org/10.1016/j.jhazmat.2021.126700.

    Article  CAS  PubMed  Google Scholar 

  20. Beriot N, Peek J, Zornoza R, Geissen V, Huerta Lwanga E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci Total Environ. 2021;755(Pt 1):142653. https://doi.org/10.1016/j.scitotenv.2020.142653.

    Article  CAS  PubMed  Google Scholar 

  21. Ji Z, Huang Y, Feng Y, Johansen A, Xue J, Tremblay LA, Li Z. Effects of pristine microplastics and nanoplastics on soil invertebrates: A systematic review and meta-analysis of available data. Sci Total Environ. 2021;788:147784. https://doi.org/10.1016/j.scitotenv.2021.147784.

    Article  CAS  PubMed  Google Scholar 

  22. Boots B, Russell CW, Green DS. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ Sci Technol. 2019;53(19):11496–506. https://doi.org/10.1021/acs.est.9b03304.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar M, Xiong X, He M, Tsang DCW, Gupta J, Khan E, Harrad S, Hou D, Ok YS, Bolan NS. Microplastics as Pollutants in Agricultural Soils”. Environ Pollut. 2020;265(October):114980. https://doi.org/10.1016/j.envpol.2020.114980.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Gao T, Kang S, Sillanpää M. Importance of Atmospheric Transport for Microplastics Deposited in Remote Areas. Environ Pollut. 2019;254(November):112953. https://doi.org/10.1016/j.envpol.2019.07.121.

    Article  CAS  PubMed  Google Scholar 

  25. Okeke ES, Okoye CO, Atakpa EO, Ita RE, Nyaruaba R, Mgbechidinma CL, Akan OD. Microplastics in Agroecosystems-Impacts on Ecosystem Functions and Food Chain. Resour Conserv Recycl. 2022;177(February):105961. https://doi.org/10.1016/j.resconrec.2021.105961.

    Article  Google Scholar 

  26. Napper IE, Thompson RC. Release of Synthetic Microplastic Plastic Fibres from Domestic Washing Machines: Effects of Fabric Type and Washing Conditions. Mar Pollut Bull. 2016;112(1):39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025.

    Article  CAS  PubMed  Google Scholar 

  27. Sun Q, Ren SY, Ni HG. Incidence of Microplastics in Personal Care Products: An Appreciable Part of Plastic Pollution. Sci Total Environ. 2020;742(November):140218. https://doi.org/10.1016/j.scitotenv.2020.140218.

    Article  CAS  PubMed  Google Scholar 

  28. Beaurepaire M, Dris R, Gasperi J, Tassin B. Microplastics in the Atmospheric Compartment: A Comprehensive Review on Methods, Results on Their Occurrence and Determining Factors. Curr Opin Food Sci. 2021;41(October):159–68. https://doi.org/10.1016/j.cofs.2021.04.010.

    Article  Google Scholar 

  29. Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ. Atmospheric Microplastic Deposition in an Urban Environment and an Evaluation of Transport. Environ Int. 2020;136(March):105411. https://doi.org/10.1016/j.envint.2019.105411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Winkler A, Santo N, Ortenzi MA, Bolzoni E, Bacchetta R, Tremolada P. Does Mechanical Stress Cause Microplastic Release from Plastic Water Bottles? Water Res. 2019;166(December):115082. https://doi.org/10.1016/j.watres.2019.115082.

    Article  CAS  PubMed  Google Scholar 

  31. Zuccarello P, Ferrante M, Cristaldi A, Copat C, Grasso A, Sangregorio D, Fiore M, Conti GO. Exposure to Microplastics (<10 μm) Associated to Plastic Bottles Mineral Water Consumption: The First Quantitative Study. Water Res. 2019;157(June):365–71. https://doi.org/10.1016/j.watres.2019.03.091.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Nowack B. Probabilistic Material Flow Analysis and Emissions Modeling for Five Commodity Plastics (PUR, ABS, PA, PC, and PMMA) as Macroplastics and Microplastics✰. Resour Conserv Recycl 2022;179:106071. https://doi.org/10.1016/j.resconrec.2021.106071.

  33. Sorolla-Rosario D, Llorca-Porcel J, Pérez-Martínez M, Lozano-Castelló D, Bueno-López A. Study of Microplastics with Semicrystalline and Amorphous Structure Identification by TGA and DSC. J Environ Chem Eng. 2022;10(1):106886. https://doi.org/10.1016/j.jece.2021.106886.

    Article  CAS  Google Scholar 

  34. Borges-Ramírez MM, Mendoza-Franco EF, Escalona-Segura G, Rendón-von Osten J. Plastic Density as a Key Factor in the Presence of Microplastic in the Gastrointestinal Tract of Commercial Fishes from Campeche Bay. Mexico Environmental Pollution. 2020;267(December):115659. https://doi.org/10.1016/j.envpol.2020.115659.

    Article  CAS  PubMed  Google Scholar 

  35. Luo H, Zhao Y, Li Y, Xiang Y, He D, Pan X. Aging of Microplastics Affects Their Surface Properties, Thermal Decomposition, Additives Leaching and Interactions in Simulated Fluids. Sci Total Environ. 2020;714(April):136862. https://doi.org/10.1016/j.scitotenv.2020.136862.

    Article  CAS  PubMed  Google Scholar 

  36. Ye Y, Yu K, Zhao Y. The Development and Application of Advanced Analytical Methods in Microplastics Contamination Detection: A Critical Review. Sci Total Environ Novermber. 2021;818:151851. https://doi.org/10.1016/j.scitotenv.2021.151851.

  37. Huber M, Archodoulaki VM, Pomakhina E, Pukánszky B, Zinöcker E, Gahleitner M. Environmental Degradation and Formation of Secondary Microplastics from Packaging Material: A Polypropylene Film Case Study. Polym Degrad Stab. 2022;195(January):109794. https://doi.org/10.1016/j.polymdegradstab.2021.109794.

    Article  CAS  Google Scholar 

  38. Banerjee A, Shelver WL. Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci Total Environ. 2021;755(Pt 2):142518. https://doi.org/10.1016/j.scitotenv.2020.142518.

    Article  CAS  PubMed  Google Scholar 

  39. Sun H, Lei C, Xu J, Li R. Foliar Uptake and Leaf-to-Root Translocation of Nanoplastics with Different Coating Charge in Maize Plants. J Hazard Mater. 2021;416(August):125854. https://doi.org/10.1016/j.jhazmat.2021.125854.

    Article  CAS  PubMed  Google Scholar 

  40. Ramsperger AFRM, Jasinski J, Völkl M, Witzmann T, Meinhart M, Jérôme V, Kretschmer WP, Freitag R, Senker J, Fery A, Kress H, Scheibel T, Laforsch C. Supposedly Identical Microplastic Particles Substantially Differ in Their Material Properties Influencing Particle-Cell Interactions and Cellular Responses. J Hazard Mater. 2022;425(March):127961. https://doi.org/10.1016/j.jhazmat.2021.127961.

    Article  CAS  PubMed  Google Scholar 

  41. Michałowicz J. Bisphenol A – Sources, Toxicity and Biotransformation. Environ Toxicol Pharmacol. 2014;37(2):738–58. https://doi.org/10.1016/j.etap.2014.02.003.

    Article  CAS  PubMed  Google Scholar 

  42. Bandow N, Will V, Wachtendorf V, Simon FG. Contaminant Release from Aged Microplastic. Environ Chem. 2017;14(6):394–405.

    Article  CAS  Google Scholar 

  43. Maity S, Pramanick K. Perspectives and Challenges of Micro/Nanoplastics-Induced Toxicity with Special Reference to Phytotoxicity. Glob Change Biol. 2020;26(6):3241–50. https://doi.org/10.1111/gcb.15074.

    Article  Google Scholar 

  44. Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, da Costa J, Duarte AC, Vala H, Pereira R. Histopathological and Molecular Effects of Microplastics in Eisenia Andrei Bouché. Environ Pollut. 2017;220(January):495–503. https://doi.org/10.1016/j.envpol.2016.09.092.

    Article  CAS  PubMed  Google Scholar 

  45. Qu M, Li D, Zhao Y, Yuan Y, Wang D. Exposure to Low-Dose Nanopolystyrene Induces the Response of Neuronal JNK MAPK Signaling Pathway in Nematode Caenorhabditis Elegans. Environ Sci Eur. 2020;32(1):58. https://doi.org/10.1186/s12302-020-00331-8.

    Article  CAS  Google Scholar 

  46. Lahive E, Walton A, Horton AA, Spurgeon DJ, Svendsen C. Microplastic Particles Reduce Reproduction in the Terrestrial Worm Enchytraeus Crypticus in a Soil Exposure. Environ Pollut. 2019;255(December):113174. https://doi.org/10.1016/j.envpol.2019.113174.

    Article  CAS  PubMed  Google Scholar 

  47. Matthews S, Mai L, Jeong CB, Lee JS, Zeng EY, Xu EG. Key Mechanisms of Micro- and Nanoplastic (MNP) Toxicity across Taxonomic Groups. Comp Biochem Physiol C Toxicol Pharmacol. 2021;247(September):109056. https://doi.org/10.1016/j.cbpc.2021.109056.

    Article  CAS  PubMed  Google Scholar 

  48. Ullah R, Tsui MTK, Chen H, Chow A, Williams C, Ligaba-Osena A. Microplastics interaction with terrestrial plants and their impacts on agriculture. J Environ Qual. 2021;50(5):1024–41.

    Article  CAS  PubMed  Google Scholar 

  49. Lin SJ, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small. 2009;5(10):1128–32.

    CAS  PubMed  Google Scholar 

  50. Zhao Q, Ma C, White JC, Dhankher OP, Zhang X, Zhang S, Xing B. Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon. 2017;114:661–70.

    Article  CAS  Google Scholar 

  51. Larue, C., Sarret, G., Castillo-Michel, H., del Real, A.E.P.. A Critical Review on the Impacts of Nanoplastics and Microplastics on Aquatic and Terrestrial Photosynthetic Organisms. Small. 2021;17(20).

  52. Etxeberria E, Gonzalez P, Baroja-Fernández E, Romero JP. Fluid Phase Endocytic Uptake of Artificial Nano-Spheres and Fluorescent Quantum Dots by Sycamore Cultured Cells. Plant Signal Behav. 2006;1(4):196–200.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sun XD, Yuan XZ, Jia YB, Feng LJ, Zhu FP, Dong SS, Liu JJ, Kong XP, Tian HY, Duan JL, Ding ZJ, Wang SG, Xing BS. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology. 2020;15(9):755-+.

  54. Sun HF, Lei CL, Xu JH, Li RL. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J Hazard Mater. 2021;416:125854. https://doi.org/10.1016/j.jhazmat.2021.125854.

  55. Li LZ, Luo YM, Li RJ, Zhou Q, Peijnenburg W, Yin N, Yang J, Tu C, Zhang YC. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustain. 2020;3(11):929–37.

    Article  Google Scholar 

  56. Conti GO, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A, Fiore M, Zuccarello P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res. 2020;187:109677. https://doi.org/10.1016/j.envres.2020.109677.

  57. Lian JP, Liu WT, Sun YB, Men SZ, Wu JN, Zeb A, Yang TZ, Ma LQ, Zhou QX. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. J Hazard Mater. 2022;423(part B):127241. https://doi.org/10.1016/j.jhazmat.2021.127241.

  58. Li SX, Guo JH, Wang TY, Gong L, Liu FL, Brestic M, Liu SQ, Song FB, Li XN. Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat. J Pineal Res. 2021;71(3):e12761. https://doi.org/10.1111/jpi.12761.

  59. Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, Bellani L, Ruffini Castiglione M. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol Biochem. 2020;149:170–7.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou CQ, Lu CH, Mai L, Bao LJ, Liu LY, Zeng EY. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. J Hazard Mater. 2021;401:123412. https://doi.org/10.1016/j.jhazmat.2020.1234121.

  61. Dong Y, Gao M, Song Z, Qiu W. Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut. 2020;259:113892.

    Article  CAS  PubMed  Google Scholar 

  62. Yoon H, Kim JT, Chang YS, Kim EJ. Fragmentation of nanoplastics driven by plant-microbe rhizosphere interaction during abiotic stress combination. Environ Sci Nano. 2021;8(10):2802–10.

    Article  CAS  Google Scholar 

  63. Islam MS, Kormoker T, Idris AM, Proshad R, Kabir MH, Ustaoglu F. Plant-microbe-metal interactions for heavy metal bioremediation: a review. Crop Pasture Sci. 2021;73(2):21322. https://doi.org/10.1071/CP21322.

  64. Rai PK, Lee J, Brown RJC, Kim KH. Micro- and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. J Clean Prod. 2021;291:125240. https://doi.org/10.1016/j.jclepro.2020.125240.

  65. Facciola A, Visalli G, Ciarello MP, Pietro AD. Newly Emerging Airborne Pollutants: Current Knowledge of Health Impact of Micro and Nanoplastics. Int J Environ Res Public Health. 2021;18(6):2997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Stapleton PA. Toxicological considerations of nano-sized plastics. AIMS Environ Sci. 2019;6(5):367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yee MS, Hii L-W, Looi CK, Lim W-M, Wong S-F, Kok Y-Y, Tan B-K, Wong C-Y, Leong C-O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials (Basel). 2021;11(2):496.

    Article  CAS  Google Scholar 

  68. Rossi G, Barnoud J, Monticelli L. Polystyrene Nanoparticles Perturb Lipid Membranes. J Phys Chem Lett. 2014;5(1):241–6.

    Article  CAS  PubMed  Google Scholar 

  69. Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Li Y, Zhang H. Internalization and Toxicity: A Preliminary Study of Effects of Nanoplastic Particles on Human Lung Epithelial Cell. Sci Total Environ. 2019;694(December):133794. https://doi.org/10.1016/j.scitotenv.2019.133794.

    Article  CAS  PubMed  Google Scholar 

  70. Liu L, Xu K, Zhang B, Ye Y, Zhang Q, Jiang W. Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci Total Environ. 2021;779:146523.

    Article  CAS  PubMed  Google Scholar 

  71. Ban M, Shimoda R, Chen J. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxic Vitro. 2021;76:105225.

    Article  CAS  Google Scholar 

  72. Aljaibachi R, Laird WB, Stevens F, Callaghan A. Impacts of Polystyrene Microplastics on Daphnia Magna: A Laboratory and a Mesocosm Study. Sci Total Environ. 2020;705(February):135800. https://doi.org/10.1016/j.scitotenv.2019.135800.

    Article  CAS  PubMed  Google Scholar 

  73. Liang B, Zhong Y, Huang Y, Lin X, Liu J, Lin L, Hu M, Jiang J, Dai M, Wang B, Zhang B, Meng H, Lelaka JJJ, Sui H, Yang X, Huang Z. Underestimated Health Risks: Polystyrene Micro- and Nanoplastics Jointly Induce Intestinal Barrier Dysfunction by ROS-Mediated Epithelial Cell Apoptosis. Part Fibre Toxicol. 2021;18(1):20. https://doi.org/10.1186/s12989-021-00414-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fröhlich E, Samberger C, Kueznik T, Absenger M, Roblegg E, Zimmer A, Pieber TR. Cytotoxicity of Nanoparticles Independent from Oxidative Stress. J Toxicol Sci. 2009;34(4):363–75. https://doi.org/10.2131/jts.34.363.

    Article  PubMed  Google Scholar 

  75. Kihara S, Ashenden A, Kaur M, Glasson J, Ghosh S, van der Heijden N, Brooks AES, Mata JP, Holt S, Domigan LJ, Köper I, McGillivray DJ. Cellular Interactions with Polystyrene Nanoplastics-The Role of Particle Size and Protein Corona. Biointerphases. 2021;16(4):041001. https://doi.org/10.1116/6.0001124.

    Article  CAS  PubMed  Google Scholar 

  76. Miao L, Guo S, Liu Z, Liu S, You G, Qu H, Hou J. Effects of Nanoplastics on Freshwater Biofilm Microbial Metabolic Functions as Determined by BIOLOG ECO Microplates. Int J Environ Res Public Health. 2019;16(23):4639. https://doi.org/10.3390/ijerph16234639.

  77. Mahadevan G, Valiyaveettil S. Understanding the Interactions of Poly(Methyl Methacrylate) and Poly(Vinyl Chloride) Nanoparticles with BHK-21 Cell Line. Sci Rep. 2021;11(1):2089. https://doi.org/10.1038/s41598-020-80708-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poma A, Vecchiotti G, Colafarina S, Zarivi O, Aloisi M, Arrizza L, Chichiricco G, Di Carlo P. In Vitro Genotoxicity of Polystyrene Nanoparticles on the Human Fibroblast Hs27 Cell Line. Nanomaterials (Basel). 2019;9(9):1299. https://doi.org/10.3390/nano9091299.

  79. Domenech J, Cortes C, Vela L, Marcos R, Hernandez A. Polystyrene Nanoplastics as Carriers of Metals. Interactions of Polystyrene Nanoparticles with Silver Nanoparticles and Silver Nitrate, and Their Effects on Human Intestinal Caco-2 Cells. Biomolecules. 2021;11(6):859. https://doi.org/10.3390/biom11060859.

  80. Gaspar TR, Chi RJ, Parrow MW, Ringwood AH. Cellular Bioreactivity of Micro- and Nano-Plastic Particles in Oysters. Front Mar Sci. 2018;5:345. https://doi.org/10.3389/fmars.2018.00345.

    Article  Google Scholar 

  81. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicol Appl Pharmacol. 2001;175(3):191–9. https://doi.org/10.1006/taap.2001.9240.

    Article  CAS  PubMed  Google Scholar 

  82. Lim SL, Ng CT, Zou L, Lu L, Chen J, Bay BH, Shen H-M, Ong CN. Targeted Metabolomics Reveals Differential Biological Effects of Nanoplastics and NanoZnO in Human Lung Cells. Nanotoxicology. 2019;13(8):1117–32. https://doi.org/10.1080/17435390.2019.1640913.

    Article  CAS  PubMed  Google Scholar 

  83. Dong C-D, Chen C-W, Chen Y-C, Chen H-H, Lee J-S, Lin C-H. Polystyrene Microplastic Particles: In Vitro Pulmonary Toxicity Assessment. J Hazard Mater. 2020;385(March):121575. https://doi.org/10.1016/j.jhazmat.2019.121575.

    Article  CAS  PubMed  Google Scholar 

  84. Yang S, Cheng Y, Chen Z, Liu T, Yin L, Pu Y, Liang G. In Vitro Evaluation of Nanoplastics Using Human Lung Epithelial Cells, Microarray Analysis and Co-Culture Model. Ecotoxicol Environ Saf. 2021;226(December):112837. https://doi.org/10.1016/j.ecoenv.2021.112837.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu K, Jia H, Sun Y, Dai Y, Zhang C, Guo X, Wang T, Zhu L. Enhanced Cytotoxicity of Photoaged Phenol-Formaldehyde Resins Microplastics: Combined Effects of Environmentally Persistent Free Radicals, Reactive Oxygen Species, and Conjugated Carbonyls. Environ Int. 2020;145(December):106137. https://doi.org/10.1016/j.envint.2020.106137.

    Article  CAS  PubMed  Google Scholar 

  86. Paget V, Dekali S, Kortulewski T, Grall R, Gamez C, Blazy K, Aguerre-Chariol O, Chevillard S, Braun A, Rat P, Lacroix G. Specific Uptake and Genotoxicity Induced by Polystyrene Nanobeads with Distinct Surface Chemistry on Human Lung Epithelial Cells and Macrophages. PLoS ONE. 2015;10(4):e0123297. https://doi.org/10.1371/journal.pone.0123297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stock V, Bohmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, Selb R, Lichtensein D, Voss L, Henderson CJ, Zabinsky E, Sieg H, Braeuning A, Lampen A. Uptake and Effects of Orally Ingested Polystyrene Microplastic Particles in Vitro and in Vivo. Arch Toxicol. 2019;93(7):1817–33. https://doi.org/10.1007/s00204-019-02478-7.

    Article  CAS  PubMed  Google Scholar 

  88. Walczak AP, Kramer E, Hendriksen PJM, Tromp P, Helsper JPFG, van der Zande M, Rietjens IMCM, Bouwmeester H. Translocation of Differently Sized and Charged Polystyrene Nanoparticles in in Vitro Intestinal Cell Models of Increasing Complexity. Nanotoxicology. 2015;9(4):453–61. https://doi.org/10.3109/17435390.2014.944599.

    Article  CAS  PubMed  Google Scholar 

  89. Inkielewicz-Stepniak I, Tajber L, Behan G, Zhang H, Radomski MW, Medina C, Santos-Martinez MJ. The Role of Mucin in the Toxicological Impact of Polystyrene Nanoparticles. Materials. 2018;11(5):724. https://doi.org/10.3390/ma11050724.

    Article  CAS  PubMed Central  Google Scholar 

  90. Wang S, Wang Y, Liang Y, Cao W, Sun C, Ju P, Zheng L. The Interactions between Microplastic Polyvinyl Chloride and Marine Diatoms: Physiological, Morphological, and Growth Effects. Ecotoxicol Environ Saf. 2020;203(October):111000. https://doi.org/10.1016/j.ecoenv.2020.111000.

    Article  CAS  PubMed  Google Scholar 

  91. Kawata K, Osawa M, Okabe S. In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic Doses to HepG2 Human Hepatoma Cells. Environ Sci Technol. 2009;43(15):6046–51. https://doi.org/10.1021/es900754q.

    Article  CAS  PubMed  Google Scholar 

  92. Stock V, Böhmert L, Dönmez MH, Lampen A, Sieg H. An Inverse Cell Culture Model for Floating Plastic Particles. Anal Biochem. 2020;591(February):113545. https://doi.org/10.1016/j.ab.2019.113545.

    Article  CAS  PubMed  Google Scholar 

  93. He Y, Li J, Chen J, Miao X, Li G, He Q, Xu H, Li H, Wei Y. Cytotoxic Effects of Polystyrene Nanoplastics with Different Surface Functionalization on Human HepG2 Cells. Sci Total Environ. 2020;723(June):138180. https://doi.org/10.1016/j.scitotenv.2020.138180.

    Article  CAS  PubMed  Google Scholar 

  94. Busch M, Bredeck G, Kampfer AAM, Schins RPF. Investigations of Acute Effects of Polystyrene and Polyvinyl Chloride Micro- and Nanoplastics in an Advanced in Vitro Triple Culture Model of the Healthy and Inflamed Intestine. Environ Res. 2021;193(February):110536. https://doi.org/10.1016/j.envres.2020.110536.

    Article  CAS  PubMed  Google Scholar 

  95. Sivagami M, Selvambigai M, Devan U, Velangani AAJ, Karmegam N, Biruntha M, Arun A, Kim W, Govarthanan M, Kumar P. Extraction of Microplastics from Commonly Used Sea Salts in India and Their Toxicological Evaluation. Chemosphere. 2021;263(January):128181. https://doi.org/10.1016/j.chemosphere.2020.128181.

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y-L, Zheng C-M, Lee Y-H, Cheng Y-Y, Lin Y-F, Chiu H-W. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci. 2021;22(9):4787. https://doi.org/10.3390/ijms22094787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Llorca M, Farré M. Current Insights into Potential Effects of Micro-Nanoplastics on Human Health by in-Vitro Tests. Front Toxico. 2021;3:39. https://doi.org/10.3389/ftox.2021.752140.

    Article  Google Scholar 

  98. Choi D, Bang J, Kim T, Oh Y, Hwang Y, Hong J. In Vitro Chemical and Physical Toxicities of Polystyrene Microfragments in Human-Derived Cells. J Hazard Mater. 2020;400(December):123308. https://doi.org/10.1016/j.jhazmat.2020.123308.

    Article  CAS  PubMed  Google Scholar 

  99. Choi D, Hwang J, Bang J, Han S, Kim T, Oh Y, Hwang Y, Choi J, Hong J. In Vitro Toxicity from a Physical Perspective of Polyethylene Microplastics Based on Statistical Curvature Change Analysis. Sci Total Environ. 2021;752(January):142242. https://doi.org/10.1016/j.scitotenv.2020.142242.

    Article  CAS  PubMed  Google Scholar 

  100. Liu Y, Li W, Lao F, Liu Y, Wang L, Bai R, Zhao Y, Chen C. Intracellular Dynamics of Cationic and Anionic Polystyrene Nanoparticles without Direct Interaction with Mitotic Spindle and Chromosomes. Biomaterials. 2011;32(32):8291–303. https://doi.org/10.1016/j.biomaterials.2011.07.037.

    Article  CAS  PubMed  Google Scholar 

  101. National Academies of Sciences, Engineering and Medicine. Using 21st Century Science to Improve Risk-Related Evaluations. Washington, DC: The National Academies Press; 2017. https://doi.org/10.17226/24635.

  102. Jâms IB, Windsor FM, Poudevigne-Durance T, Ormerod SJ, Durance I. Estimating the Size Distribution of Plastics Ingested by Animals. Nat Commun. 2020;11(March):1594. https://doi.org/10.1038/s41467-020-15406-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Courtene-Jones W, Maddalene T, James MK, Smith NS, Youngblood K, Jambeck JB, Earthrowl S, Delvalle-Borrero D, Penn E, Thompson RC. Source, Sea and Sink—A Holistic Approach to Understanding Plastic Pollution in the Southern Caribbean. Sci Total Environ. 2021;797(November):149098. https://doi.org/10.1016/j.scitotenv.2021.149098.

    Article  CAS  PubMed  Google Scholar 

  104. Wei X, Li M, Wang Y, Jin L, Ma G, Yu H. Developing Predictive Models for Carrying Ability of Micro-Plastics towards Organic Pollutants. Molecules (Basel, Switzerland). 2019;24(9):E1784. https://doi.org/10.3390/molecules24091784.

    Article  CAS  Google Scholar 

  105. Duru CE, Duru LA, Enyoh CE. In Silico Binding Affinity Analysis of Microplastic Compounds on PET Hydrolase Enzyme Target of Ideonella Sakaiensis. Bull Natl Res Cent. 2021;45(1):104. https://doi.org/10.1186/s42269-021-00563-5.

    Article  Google Scholar 

  106. Almeida EL, Rincón AFC, Jackson SA, Dobson ADW. In Silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces Sp. SM14. Front Microbiol. 2019;10:2187. https://doi.org/10.3389/fmicb.2019.02187.

    Article  PubMed  PubMed Central  Google Scholar 

  107. WHO. Antimicrobial resistance. 2021. http://www.who.int/mediacentre/factsheets/fs194/en/. Accessed 21 April 2022.

  108. Fletcher S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med. 2015;20:243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marathe NP, Bank MS. The Microplastic-Antibiotic Resistance Connection. In: Bank MS, editor. Microplastic in the Environment: Pattern and Process. Springer International Publishing; 2022. pp 311–322. https://doi.org/10.1007/978-3-030-78627-4_9.

  110. Keswani A, Oliver DM, Gutierrez T, Quilliam RS. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Mar Environ Res. 2016;118:10–9.

    Article  CAS  PubMed  Google Scholar 

  111. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ Sci Technol. 2013;47:7137–46.

    Article  CAS  PubMed  Google Scholar 

  112. Joshua DI, Praveenkumarreddy Y, Prabhasankar PV, D’Souza AP, Yamashita N, Balakrishna K. First report of pharmaceuticals and personal care products in two tropical rivers of southwestern India. Environ Monit Assess. 2020;192:529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu Y, Liu W, Yang X, Wang J, Lin H, Yang Y. Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Sci Total Environ. 2021;773:145643.

    Article  CAS  PubMed  Google Scholar 

  114. Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere. 2019;215:846–57.

    Article  CAS  PubMed  Google Scholar 

  115. Yang Y, Liu G, Song W, Ye C, Lin H, Li Z, Liu W. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.

    Article  CAS  PubMed  Google Scholar 

  116. Zhu F, Zhu C, Wang C, Gu C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull Environ Contam Toxicol. 2019;102:741–9.

    Article  CAS  PubMed  Google Scholar 

  117. Besseling E, Redondo-Hasselerharm P, Foekema EM, Koelmans AA. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit Rev Environ Sci Technol. 2019;49:32–80.

    Article  Google Scholar 

  118. Wahl A, Le Juge C, Davranche M, El Hadri H, Grassl B, Reynaud S, Gigault,. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere. 2021;262:127784.

    Article  CAS  PubMed  Google Scholar 

  119. Zhou X-X, He S, Gao Y, Li Z-C, Chi H-Y, Li C-J, Wang D-J, Yan B. Protein Corona-Mediated Extraction for Quantitative Analysis of Nanoplastics in Environmental Waters by Pyrolysis Gas Chromatography/Mass Spectrometry. Anal Chem. 2021;93:6698–705.

    Article  CAS  PubMed  Google Scholar 

  120. Mintenig SM, Bäuerlein PS, Koelmans AA, Dekker SC, van Wezel AP. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ Sci Nano. 2018;5:1640–9.

    Article  CAS  Google Scholar 

  121. Jimenez-Lamana J, Marigliano L, Allouche J, Grassl B, Szpunar J, Reynaud S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal Chem. 2020;92:11664–72.

    Article  CAS  PubMed  Google Scholar 

  122. Zhou X, Liu R, Hao LT, Liu JF. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta. 2020;221:121552.

    Article  PubMed  CAS  Google Scholar 

  123. Cai H, Chen M, Du F, Matthews S, Shi H. Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation. Water Res. 2021;203:117509. https://doi.org/10.1016/j.watres.2021.117509.

  124. Zhou X, Hao L, Wang H, Li Y, Liu J. Cloud-Point Extraction Combined with Thermal Degradation for Nanoplastic Analysis Using Pyrolysis Gas Chromatography-Mass Spectrometry. Anal Chem. 2019;91:1785–90.

    Article  CAS  PubMed  Google Scholar 

  125. Li Q-C, Lai Y, Yu S, Li P, Zhou X, Dong L, Liu X, Yao Z, Liu J. Sequential Isolation of Microplastics and Nanoplastics in Environmental Waters by Membrane Filtration, Followed by Cloud-Point Extraction. Anal Chem. 2021;93:4559–66.

    Article  CAS  PubMed  Google Scholar 

  126. Lv L, He L, Jiang S, Chen J, Zhou C, Qu J, Lu Y, Hong P, Sun S, Li C. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci Total Environ. 2020;728:138449.

    Article  CAS  PubMed  Google Scholar 

  127. Mowla M, Shakiba S, Louie SM. Selective quantification of nanoplastics in environmental matrices by asymmetric flow field – flow fractionation with total organic carbon detection. Chem Commun. 2021. https://doi.org/10.1039/d1cc04852j.

    Article  Google Scholar 

  128. Blancho F, Davranche M, Hadri HE, Grassl B, Gigault J. Nanoplastics Identification in Complex Environmental Matrices: Strategies for Polystyrene and Polypropylene. Environ Sci Technol. 2021;55:8753–9.

    Article  CAS  PubMed  Google Scholar 

  129. Gillibert R, Balakrishnan G, Deshoules Q, Tardivel M, Magazzu A, Donato MG, Marago OM, dela Chapelle ML, Colas F, Lagarde F, Gucciardi PG. Raman Tweezers for Small Microplastics and Nanoplastics Identification in Seawater. Environ Sci Technol. 2019;53:9003–13.

    Article  CAS  PubMed  Google Scholar 

  130. Hernandez LM, Yousefi N, Tufenkji N. Are There Nanoplastics in Your Personal Care Products? Environ Sci Technol Lett. 2017;4(7):280–5.

    Article  CAS  Google Scholar 

  131. Lai Y, Dong L, Li Q, Li P, Hao Z, Yu S, Liu J. Counting Nanoplastics in Environmental Waters by Single Particle Inductively Coupled Plasma Mass Spectroscopy after Cloud-Point Extraction and In Situ Labeling of Gold Nanoparticles. Environ Sci Technol. 2021;55:4783–91.

    Article  CAS  PubMed  Google Scholar 

  132. Besseling E, Wang B, Lürling M, Koelmans AA. Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna. Environ Sci Technol. 2014;48(20):12336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen Q, Yin D, Jia Y, Schiwy S, Legradi J, Yang S, Hollert H. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci Total Environ. 2017;609:1312–21.

    Article  CAS  PubMed  Google Scholar 

  134. Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ Sci Technol. 2014;48(20):12302–11.

    Article  CAS  PubMed  Google Scholar 

  135. Greven A-C, Merk T, Karagöz F, Mohr K, Klapper M, Jovanović B, Palić D. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ Toxicol Chem. 2016;35(12):3093–100.

    Article  CAS  PubMed  Google Scholar 

  136. Pitt JA, Kozal JS, Jayasundara N, Massarsky A, Trevisan R, Geitner N, Wiesner M, Levin ED, Di Giulio RT. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat Toxicol. 2018;194:185–94.

    Article  CAS  PubMed  Google Scholar 

  137. Mariano S, Tacconi S, Fidaleo M, Rossi M, Dini L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front Toxicol. 2021;3(2):636640.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Okshevsky M, Guatier E, Farner JM, Schreiber L, Tufenkji N. Biofilm formation by marine bacteria is impacted by concentration and surface functionalization of polystyrene nanoparticles in a species-specific manner. Environ Microbiol Rep. 2020;12(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  139. Sun X, Chen B, Li Q, Liu N, Xia B, Zhu L, Qu K. Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphila. Sci Total Environ. 2018;642:1378–85.

    Article  CAS  PubMed  Google Scholar 

  140. Gonçalves JM, Bebianno MJ. Nanoplastics impact on marine biota: A review. Environ Pollut. 2021;273:116426.

    Article  PubMed  CAS  Google Scholar 

  141. Fu S-F, Ding J-N, Zhang Y, Li Y-F, Zhu R, Yuan X-Z, Zou H. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci Total Environ. 2018;625:64–70.

    Article  CAS  PubMed  Google Scholar 

  142. Fringer VS, Fawcett LP, Mitrano DM, Maurer-Jones MA. Impacts of Nanoplastics on the Viability and Riboflavin Secretion in the Model Bacteria Shewanella oneidensis. Front Environ Sci. 2020;8(97). https://doi.org/10.3389/fenvs.2020.00097.

  143. Mao Y, Li H, Huangfu X, Liu Y, He Q. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations. Environ Pollut. 2020;258:113760.

    Article  CAS  PubMed  Google Scholar 

  144. OECD, Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. In: OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris; 2011. https://doi.org/10.1787/9789264069923-en.

  145. Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MHS, Vetthaak AD. Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol. 2016;170:259–61.

    Article  CAS  PubMed  Google Scholar 

  146. Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol. 2017;189:159–69.

    Article  CAS  PubMed  Google Scholar 

  147. Bhattacharya P, Lin S, Turner JP, Ke PC. Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis. J Phys Chem C. 2010;114(39):16556–61.

    Article  CAS  Google Scholar 

  148. Qi YL, Yang XM, Pelaez AM, Lwanga EH, Beriot N, Gertsen H, Garbeva P, Geissen V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ. 2018;645:1048–56.

    Article  CAS  PubMed  Google Scholar 

  149. Abdolahpur MF, Vijver MG, Mitrano DM, Leslie HA, Guo Z, Zhang P, Lynch I, Valsami-Jones E, Peijnenburg WJGM. The analytical quest for sub-micron plastics in biological matrices. Nano Today. 2021;41:101296.

    Article  CAS  Google Scholar 

  150. Sridhar A, Kannan D, Prabhakar S. Extraction and detection methods of microplastics in food and marine systems: A critical review. Chemosphere. 2022;286:31653–31653.

    Article  CAS  Google Scholar 

  151. Li CJ, Gao Y, He S, Chi HY, Li ZC, Zhou XX, Yan B. Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry. Environ Sci Technol Lett. 2021;8(8):633–8.

    Article  CAS  Google Scholar 

  152. Jiang XF, Chen H, Liao YC, Ye ZQ, Li M, Klobucar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut. 2019;250:831–8.

    Article  CAS  PubMed  Google Scholar 

  153. Li LZ, Luo YM, Peijnenburg W, Li RJ, Yang J, Zhou Q. Confocal measurement of microplastics uptake by plants. Methodsx. 2020;7.

  154. Taylor SE, Pearce CI, Sanguinet KA, Hu DH, Chrisler WB, Kim YM, Wang Z, Flury M. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environ Sci Nano. 2020;7(7):1942–53.

    Article  CAS  Google Scholar 

  155. Mitrano DM, Beltzung A, Frehland S, Schmiedgruber M, Cingolani A, Schmidt F. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat Nanotechnol. 2019;14(4):362-+.

  156. Zamora-Perez P, Tsoutsi D, Xu RX, Rivera-Gil P. Hyperspectral-Enhanced Dark Field Microscopy for Single and Collective Nanoparticle Characterization in Biological Environments. Materials. 2018;11(2):243. https://doi.org/10.3390/ma11020243.

    Article  CAS  PubMed Central  Google Scholar 

  157. Rafiee M, Dargahi L, Eslami A, Beirami E, Jahangiri-rad M, Sabour S, Amereh F. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere. 2018;93:745–53. https://doi.org/10.1016/j.chemosphere.2017.11.076.

    Article  CAS  Google Scholar 

  158. Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull. 2011;62:2588–97.

    Article  CAS  PubMed  Google Scholar 

  159. Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv drug Deliv Rev. 2001;50:107–42.

    Article  CAS  PubMed  Google Scholar 

  160. Cole M, Galloway TS. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ Sci Technol. 2015;49(2015):14625–32.

    Article  CAS  PubMed  Google Scholar 

  161. Mattsson K, Hansson LA, Cedervall T. Nano-plastics in the aquatic environment. Environ Sci Process Impacts. 2015;17(10):1712–21.

    Article  CAS  PubMed  Google Scholar 

  162. Gagné F. Detection of polystyrene nanoplastics in biological tissues with a fluorescent molecular rotor probe. J Xenobiot. 2019;9:1–3. https://doi.org/10.4081/xeno.2019.8147.

    Article  CAS  Google Scholar 

  163. Walczak AP, Hendriksen PJM, Woutersen RA, van der Zande M, Undas AK, Helsdingen R, van den Berg HHJ, Rietjens IMCM, Bouwmeester H. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J Nanoparticle Res. 2015;17:231.

    Article  CAS  Google Scholar 

  164. Huang CJ, Narasimha GV, Chen YC, Chen JK, Dong GC. Measurement of low concentration of micro-plastics by detection of bioaffinity-induced particle retention using surface plasmon resonance biosensors. Biosensors. 2021;11:219. https://doi.org/10.3390/bios11070219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pollard M, Hunsicker E, Platt M. A tunable three-dimensional printed microfluidic resistive pulse sensor for the characterization of algae and microplastics. ACS Sens. 2020;5:2578–86. https://doi.org/10.1021/acssensors.0c00987.

    Article  CAS  PubMed  Google Scholar 

  166. Oh S, Hur H, Kim Y, Shin S, Woo H, Choi J, Lee HH. Peptide specific nanoplastic detection based on sandwich typed localized surface plasmon resonance. Nanomaterials. 2021;11:2887. https://doi.org/10.3390/nano11112887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li J, Liu H, Chen P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018;137:362–74. https://doi.org/10.1016/j.watres.2017.12.056.

    Article  CAS  PubMed  Google Scholar 

  168. Prata JC, Paço A, Reis V, da Costa JP, Fernandes AJS, da Costa FM, Duarte AC, Rocha-Santos T. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chem. 2020;331:127323. https://doi.org/10.1016/j.foodchem.2020.127323.

    Article  CAS  PubMed  Google Scholar 

  169. Corami F, Rosso B, Roman M, Picone M, Gambaro A, Barbante C. Evidence of small microplastics (<100 μm) ingestion by Pacific oysters (Crassostrea gigas): A novel method of extraction, purification, and analysis using Micro-FTIR. Marine Pollut Bullet. 2020;160:111606. https://doi.org/10.1016/j.marpolbul.2020.111606.

    Article  CAS  Google Scholar 

  170. Makhdoumi P, Naghshbandi M, Ghaderzadeh K, Mirzabeigi M, Yazdanbakhsh A, Hossini H. Micro-plastic occurrence in bottled vinegar: Qualification, quantification and human risk exposure. Process Saf Environ Prot. 2021;152:404–13. https://doi.org/10.1016/j.psep.2021.06.022.

    Article  CAS  Google Scholar 

  171. Vinay Kumar BN, Löschel LA, Imhof HK, Löder MGJ, Laforsch C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ Pollut. 2021;269:116147. https://doi.org/10.1016/j.envpol.2020.116147.

    Article  CAS  PubMed  Google Scholar 

  172. Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Detection of Sub-Micro- and Nanoplastic Particles on Gold Nanoparticle-Based Substrates through Surface-Enhanced Raman Scattering (SERS) Spectroscopy. Nanomaterials. 2021;11(5):1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol. 2019;53(21):12300–10. https://doi.org/10.1021/acs.est.9b02540.

    Article  CAS  PubMed  Google Scholar 

  174. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Frohlich E. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol. 2014;30(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  175. Salvati A, Nelissen I, Haase A, Aberg C, Moya S, Jacobs A, Alnasser F, Bewersdorff T, Deville S, Luch A, Dawson KA. Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact. 2018;9:42–50.

    Article  Google Scholar 

  176. Forte M, Lachetta G, Tussellino M, Carotenuto R, Prisco M, De Falco M, Laforgia V, Valiante S. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro. 2016;31:126–36.

    Article  CAS  PubMed  Google Scholar 

  177. Li Y, Xu M, Zhang Z, Halimu G, Li Y, Li Y, Gu W, Zhang B, Wnag X. In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. J Hazard Mater. 2021;424(Pt B):127508.

    PubMed  Google Scholar 

  178. Ruenraroengsak P, Tetley TD. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Part Fibre Toxicol. 2015;12:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Thubagere A, Reinhard BM. Nanoparticle-Induced Apoptosis Propagates through Hydrogen-Peroxide-Mediated Bystander Killing: Insights from a Human Intestinal Epithelium In Vitro Model. ACS Nano. 2010;4(7):3611–22.

    Article  CAS  PubMed  Google Scholar 

  180. Chiu HW, Xia T, Lee Y-H, Chen C-W, Tsai J-C, Wang Y-J. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale. 2015;7(2):736–46.

    Article  CAS  PubMed  Google Scholar 

  181. Mahler GJ, Esch MB, Tako E, Southard TS, Archer SD, Glahn RP, Shuler ML. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol. 2012;7(4):264–71.

    Article  CAS  PubMed  Google Scholar 

  182. McCarthy J, Gong X, Nahirney D, Duszyk M, Radomski MW. Polystyrene nanoparticles activate ion transport in human airway epithelial cells. Int J Nanomedicine. 2011;2011(6):1343–56.

    Article  CAS  Google Scholar 

  183. Xia L, Gu W, Zhang M, Chang Y-N, Chen K, Bai X, Yu L, Li J, Li S, Xing G. Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation. Part Fibre Toxicol. 2016;13(1):63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Asamoah BO, Salmi P, Räty J, Ryymin K, Talvitie J, Karjalainen AK, Kukkonen JVK, Roussey M, Peiponen KE. Optical Monitoring of Microplastics Filtrated from Wastewater Sludge and Suspended in Ethanol. Polymers. 2021;13(6):871. https://doi.org/10.3390/polym13060871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. McLamore ES, Alocilja E, Gomes C, Gunasekaran S, Jenkins D, Datta SPA, Li Y, Mao Y, Nugen SR, Reyes-De-Corcuera JI, Takhistov P, Tsyusko O, Cochran JP, Tzeng T, Yoon J, Yu C, Zhou A. FEAST of Biosensors: Food, Environmental and Agricultural Sensing Technologies (FEAST) in North America. Biosens Bioelectron. 2021;410:128208. https://doi.org/10.1016/j.bios.2021.113011.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the USDA-NIFA multistate project NC-1194.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenxu Yu or Paul Takhistov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (PDF 175 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Takhistov, P., Alocilja, E. et al. Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems. Anal Bioanal Chem 414, 4591–4612 (2022). https://doi.org/10.1007/s00216-022-04069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04069-5

Keywords

Navigation