Skip to main content
Log in

Nano-sized and micro-sized polystyrene particles affect phagocyte function

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allermann L, Poulsen OM. Interleukin-8 secretion from monocytic cell lines for evaluation of the inflammatory potential of organic dust. Environ Res. 2002;88:188–98.

    Article  CAS  PubMed  Google Scholar 

  • Bernard L, Vaudaux P, Huggler E, Stern R, Frehel C, Francois P, et al. Inactivation of a subpopulation of human neutrophils by exposure to ultrahigh-molecular-weight polyethylene wear debris. FEMS Immunol Med Microbiol. 2007;49:425–32.

    Article  CAS  PubMed  Google Scholar 

  • Catelas I, Huk OL, Petit A, Zukor DJ, Marchand R, Yahia L. Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. J Biomed Mater Res. 1998;41:600–7.

    Article  CAS  PubMed  Google Scholar 

  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2009;26:244–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fröhlich E, Samberger C, Kueznik T, Absenger M, Roblegg E, Zimmer A, et al. Cytotoxicity of nanoparticles independent from oxidative stress. J Toxicol Sci. 2009;34:363–75.

    Article  PubMed  Google Scholar 

  • Fröhlich E, Meindl C, Roblegg E, Ebner B, Absenger M, Pieber TR. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Part Fibre Toxicol. 2012a;9:26.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fröhlich E, Meindl C, Roblegg E, Griesbacher A, Pieber TR. Cytotoxicity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Nanotoxicology. 2012b;6:424–3.

    Article  PubMed  Google Scholar 

  • Fröhlich E, Bonstingl G, Hofler A, Meindl C, Leitinger G, Pieber TR, et al. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol in vitro. 2013;27:409–17.

    Article  PubMed  Google Scholar 

  • Frokjaer J, Deleuran B, Lind M, Overgaard S, Soballe K, Bunger C. Polyethylene particles stimulate monocyte chemotactic and activating factor production in synovial mononuclear cells in vivo. An immunohistochemical study in rabbits. Acta Orthop Scand. 1995;66:303–7.

    Article  CAS  PubMed  Google Scholar 

  • Garrett R, Wilksch J, Vernon-Roberts B. Effects of cobalt-chrome alloy wear particles on the morphology, viability and phagocytic activity of murine macrophages in vitro. Aust J Exp Biol Med Sci. 1983;61(Pt 3):355–69.

    Article  CAS  PubMed  Google Scholar 

  • Gosens I, Post JA, de la Fonteyne LJ, Jansen EH, Geus JW, Cassee FR, et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7:37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedenborg M. Titanium dioxide induced chemiluminescence of human polymorphonuclear leukocytes. Int Arch Occup Environ Health. 1988;61:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Heng BC, Zhao X, Tan EC, Khamis N, Assodani A, Xiong S, et al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.

    Article  CAS  PubMed  Google Scholar 

  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5:2848–56.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao JK, Chu HH, Wang YH, Lai CW, Chou PT, Hsieh ST, et al. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed. 2008;21:820–9.

    Article  CAS  PubMed  Google Scholar 

  • Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, et al. Microglial response to gold nanoparticles. ACS nano. 2010;4:2595–606.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A. Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol. 2009;234:68–76.

    Article  CAS  PubMed  Google Scholar 

  • Jones BG, Dickinson PA, Gumbleton M, Kellaway IW. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int J Pharm. 2002;236:65–79.

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic B, Anastasova L, Rowe EW, Zhang Y, Clapp AR, Palic D. Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf. 2011;74:675–83.

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa R, Watari F, Takashi N, Tanimura Y, Uo M, Totsuka Y. Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials. 2002;23:3757–64.

    Article  CAS  PubMed  Google Scholar 

  • Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS nano. 2012;6:5845–57.

    Article  CAS  PubMed  Google Scholar 

  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc. 2013;135:1438–44.

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Yin LH, Pu YP, Li YH, Zhang XQ, Liang GY, et al. The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure. J Nanosci Nanotechnol. 2010;10:8491–9.

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105:14265–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mainardes RM, Gremiao MP, Brunetti IL, da Fonseca LM, Khalil NM. Zidovudine-loaded PLA and PLA-PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci. 2009;98:257–67.

    Article  CAS  PubMed  Google Scholar 

  • Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine: Nanotech Biol Med. 2010;5:523–8.

    Article  Google Scholar 

  • Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K. Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm. 2009;72:496–501.

    Article  CAS  PubMed  Google Scholar 

  • Olivier V, Duval JL, Hindie M, Pouletaut P, Nagel MD. Comparative particle-induced cytotoxicity toward macrophages and fibroblasts. Cell Biol Toxicol. 2003;19:145–59.

    Article  CAS  PubMed  Google Scholar 

  • Papatheofanis FJ, Barmada R. Polymorphonuclear leukocyte degranulation with exposure to polymethylmethacrylate nanoparticles. J Biomed Mater Res. 1991;25:761–71.

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184:18–25.

    Article  CAS  PubMed  Google Scholar 

  • Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol. 2001;172:119–27.

    Article  CAS  PubMed  Google Scholar 

  • Roblegg E, Fröhlich E, Meindl C, Teubl B, Zaversky M, Zimmer A. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology. 2012;6:399–413.

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol. 2006;40:4353–9.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg W, Låg M, Holme J, Friede B, Gualtieri M, Kruszewski M, et al. Comparison of non-crystalline silica nanoparticles in IL-1ß release from macrophages. Part Fibre Toxicol. 2012;9:32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scheel J, Weimans S, Thiemann A, Heisler E, Hermann M. Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: assessment of cytotoxicity, activation and stress response. Toxicol in vitro. 2009;23:531–8.

    Article  CAS  PubMed  Google Scholar 

  • Scherbart AM, Langer J, Bushmelev A, van Berlo D, Haberzettl P, van Schooten FJ, et al. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol. 2011;8:31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segat D, Tavano R, Donini M, Selvestrel F, Rio-Echevarria I, Rojnik M, et al. Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine: Nanotech Biol Med. 2011;6:1027–46.

    Article  CAS  Google Scholar 

  • Shavandi Z, Ghazanfari T, Moghaddam KN. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol Immunotoxicol. 2011;33:135–40.

    Article  CAS  PubMed  Google Scholar 

  • Shwe TT, Yamamoto S, Kakeyama M, Kobayashi T, Fujimaki H. Effect of intratracheal instillation of ultrafine carbon black on proinflammatory cytokine and chemokine release and mRNA expression in lung and lymph nodes of mice. Toxicol Appl Pharmacol. 2005;209:51–61.

    Article  PubMed  Google Scholar 

  • Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–81.

    Article  CAS  PubMed  Google Scholar 

  • Vesnina LE, Mamontova TV, Mikitiuk MV, Kutsenko NL, Kutsenko LA, Bobrova NA, et al. Effect of fullerene C60 on functional activity of phagocytic cells. Eksp Klin Farmakol. 2011;74:26–9.

    CAS  PubMed  Google Scholar 

  • Villiers C, Freitas H, Couderc R, Villiers MB, Marche P. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res. 2010;12:55–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter G, Santra S, Thattaliyath B, Grant S. (Super)paramagnetic nanoparticles: applications in noninvasive MR imaging of stem cell transfer. In: Bulte J, Modo M, editors. Fundamental biomedical technologies nanoparticles in biomedical imaging emerging technologies and applications. New York: Springer; 2008.

    Google Scholar 

  • Winter M, Beer HD, Hornung V, Kramer U, Schins RP, Forster I. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology. 2011;5:326–40.

    Article  CAS  PubMed  Google Scholar 

  • Witasp E, Shvedova AA, Kagan VE, Fadeel B. Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol. 2009;21 Suppl 1:131–6.

    Article  CAS  PubMed  Google Scholar 

  • Yang EJ, Kim S, Kim JS, Choi IH. Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33:6858–67.

    Article  CAS  PubMed  Google Scholar 

  • Yue H, Wei W, Yue Z, Lv P, Wang L, Ma G, et al. Particle size affects the cellular response in macrophages. Eur J Pharm Sci. 2010;41:650–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Diana Mujk and Nicole Muhry (ELISA), Tatjana Kueznik and Markus Absenger (microscopy) and Evelyne Höller (immune assays) for excellent technical assistance, and Alison Green for help with the manuscript. This work was supported by the FP6 European integrated project “NanoBiopharmaceutics”, NMP4-CT-2006-026723, the Austrian Science Fund grants N 214-NAN and P22576-B18 and the Research and Technology Development in Project Cluster NANO-HEALTH.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fröhlich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1s

(DOC 271 kb)

Fig. 2s

(DOC 270 kb)

Fig. 3s

(DOC 202 kb)

Table 2s

(DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prietl, B., Meindl, C., Roblegg, E. et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol 30, 1–16 (2014). https://doi.org/10.1007/s10565-013-9265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9265-y

Keywords

Navigation