Skip to main content
Log in

A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB1

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The simultaneous detection of multiple mycotoxins is of great significance for food safety and human health. Herein, a simple, convenient and accurate fluorescent aptasensor was designed based on the dual cross DNA nanostructure for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1), in which the stable dual cross DNA nanostructure provided an assay platform using the fluorescent dye-labeled aptamers as a sensing element. Owing to the higher affinity of aptamers for their target, the aptamer probes were released from the assay platform in the presence of OTA and AFB1, resulting in an enhanced fluorescence at 570 nm and 670 nm. This “signal-on” fluorescent aptasensor assay system can effectively avoid background signals and minimize false positive. Furthermore, the designed method can realize the simultaneous detection of OTA and AFB1 during the whole experiment. The limits of detection (LOD) were as low as 0.0058 ng/mL for OTA, ranging from 0.01 to 50 ng/mL and 0.046 ng/mL for AFB1, ranging from 0.05 to 100 ng/mL. The proposed fluorescent aptasensor exhibits excellent performance in practical application and provides a novel approach for the simultaneous detection of multiple mycotoxins by simply changing the aptamers.

Graphical abstract

A “signal-on” fluorescent aptasensor assay system based on the stable dual cross DNA nanostructure was successfully developed for simultaneous detection of OTA and AFB1 with lower detection limits in wider linear ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang N, Liu BS, Cui XL, Li YT, Tang J, Wang HX, Zhang D, Li Z. Recent advances in aptasensors for mycotoxin detection: on the surface and in the colloid. Talanta. 2021;223(1):121729. https://doi.org/10.1016/j.talanta.2020.121729.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang Q, Wu JD, Yao K, Yin YL, Max G, Yang CB, Francis L. Paper-based microfluidic device (DON-Chip) for rapid and low-cost deoxynivalenol quantification in food, feed, and feed ingredients. ACS Sens. 2019;4(11):3072–9. https://doi.org/10.1021/acssensors.9b01895.

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Liu X, Lin Z. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chem. 2012;132(3):1549–54. https://doi.org/10.1016/j.foodchem.2011.10.109.

    Article  CAS  PubMed  Google Scholar 

  4. Wu H, Wang HY, Wu J, Han GQ, Liu YL, Zou P. A novel fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for sensitive and label-free detection of aflatoxin B1. J Hazard Mater. 2021;415(5):125584. https://doi.org/10.1016/j.jhazmat.2021.125584.

    Article  CAS  PubMed  Google Scholar 

  5. Chauhan R, Singh J, Sachdev T, Basu T, Malhotra B. Recent advances in mycotoxins detection. Biosens Bioelectron. 2016;81(15):532–45. https://doi.org/10.1016/j.bios.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Mukhtar H, Ma L, Pang Q, Wang X. VHH antibodies: reagents for mycotoxin detection in food products. Sensors. 2018;18(2):485. https://doi.org/10.3390/s18020485.

    Article  CAS  PubMed Central  Google Scholar 

  7. He TT, Zhou T, Wan H, Han QB, Ma YQ, Tan T, Wan YQ. One-step deep eutectic solvent strategy for efficient analysis of aflatoxins in edible oils. J Sci Food Agric. 2020;100(13):4840–8. https://doi.org/10.1002/jsfa.10544.

    Article  CAS  PubMed  Google Scholar 

  8. Jia YM, Wu F, Liu PL, Zhou GH, Yu B, Lou XD, Xia F. A label-free fluorescent aptasensor for the detection of aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta. 2009;198(1):71–7. https://doi.org/10.1016/j.talanta.2019.01.078.

    Article  CAS  Google Scholar 

  9. Sergeyev T, Yarynka D, Piletska E, Linnik R, Zaporozhets O, Brovko O, Piletsky S, El'skaya A. Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta. 2019;201:204–10. https://doi.org/10.1016/j.talanta.2019.04.016.

    Article  CAS  Google Scholar 

  10. Yang XS, Shi DM, Zhu SM, Wang BJ, Zhang XJ, Wang GF. Portable aptasensor of aflatoxin B1 in bread based on a personal glucose meter and DNA walking machine. ACS Sens. 2018;3(7):1368–75. https://doi.org/10.1021/acssensors.8b00304.

    Article  CAS  PubMed  Google Scholar 

  11. Seok YG, Byun JY, Shim WB, Kim MG. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta. 2015;886(30):182–7. https://doi.org/10.1016/j.aca.2015.05.041.

    Article  CAS  PubMed  Google Scholar 

  12. Tang XQ, Li PW, Zhang Q, Zhang ZW, Zhang W, Jiang J. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and Zearalenone in maize and its products. Anal Chem. 2017;89(21):11520–8. https://doi.org/10.1021/acs.analchem.7b02794.

    Article  CAS  PubMed  Google Scholar 

  13. Suo ZG, Liu XW, Hou XL, Liu Y, Lu JT, Xing FF, Chen YY, Feng LY. Ratiometric assays for acetylcholinesterase activity and organo-phosphorous pesticide based on superior carbon quantum dots and BLGF-protected gold nanoclusters FRET process. ChemistrySelect. 2020;5(29):9254–60. https://doi.org/10.1002/slct.202002042.

    Article  CAS  Google Scholar 

  14. Rasooly R, Do PM, Hernlem BJ. Low cost quantitative digital imaging as an alternative to qualitative in vivo bioassays for analysis of active aflatoxin B1. Biosens Bioelectron. 2016;80:405–10. https://doi.org/10.1016/j.bios.2016.01.087.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou JH, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):2889–93. https://doi.org/10.1038/nrd.2016.199.

    Article  CAS  Google Scholar 

  16. Zhao BJ, Wu P, Zhang H, Cai CX. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron. 2015;68(15):763–70. https://doi.org/10.1016/j.bios.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  17. Suo ZG, Chen JQ, Hou XL, Hu ZH, Xing FF, Feng LY. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Adv. 2019;9(29):16479–91. https://doi.org/10.1039/c9ra01261c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nameghi MA, Danesh NM, Ramezani M, Hassani FV, Abnous K, Taghdisi SM. A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of Ochratoxin a. Anal Bioanal Chem. 2016;408(21):5811–8. https://doi.org/10.1007/s00216-016-9693-7.

    Article  CAS  PubMed  Google Scholar 

  19. Zhong L, Cai SX, Huang YQ, Yin LT, Yang YL, Lu CH, Yang HH. A DNA octahedron-based fluorescence nanoprobe for dual tumorrelated mRNAs detection and imaging. Anal Chem. 2018;90(20):12059–66. https://doi.org/10.1021/acs.analchem.8b02847.

    Article  CAS  PubMed  Google Scholar 

  20. Wei M, He X, Xie YL. A novel signal-on fluorescent aptasensor for Ochratoxin a detection based on RecJf exonuclease-induced signal amplification. J Chin Chem Soc. 2020;67(7):1247–53. https://doi.org/10.1002/jccs.201900423.

    Article  CAS  Google Scholar 

  21. Wang Y, Hu XF, Pei YF, Sun YN, Wang FY, Song CM, Yin MQ, Deng RG, Li ZX, Zhang GPY. Selection of phage-displayed minotopes of ochratoxin a and its detection in cereal by ELISA. Anal Methods. 2015;7(5):1849–54. https://doi.org/10.1039/c4ay02290d.

    Article  CAS  Google Scholar 

  22. AntonellaVatinno A, Palmisano R, Zambonin F, Carlo G. Determination of Ochratoxin a in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection. J Chromatogr A. 2006;1115(1–2):196–201. https://doi.org/10.1016/j.chroma.2006.02.092.

    Article  CAS  Google Scholar 

  23. Gke G, Aissa SB, Nemčekov K, Catanante G, Raouafi N, Marty JL. Aptamer-modified pencil graphite electrodes for the impedimetric determination of Ochratoxin a. Food Control. 2020;115:107271. https://doi.org/10.1016/j.foodcont.2020.107271.

    Article  CAS  Google Scholar 

  24. Bulbul G, Hayat A, Andreescu S. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic Nanoceria tag. Nanoscale. 2015;7(31):13230–8. https://doi.org/10.1039/c5nr02628h.

    Article  CAS  PubMed  Google Scholar 

  25. Lin CY, Zheng HX, Sun M, Guo YJ, Luo F, Guo LH, Qiu B, Lin ZY, Chen GN. Highly sensitive colorimetric aptasensor for ochratoxin a detection based on enzyme-encapsulated liposome. Anal Chim Acta. 2018;1002(9):90–6. https://doi.org/10.1016/j.aca.2017.11.061.

    Article  CAS  PubMed  Google Scholar 

  26. Yin XT, Wang S, Liu XY, He CM, Tang YL, Li QM, Liu JH, Su HJ, Tan TW, Dong YY. Aptamer-based colorimetric biosensing of Ochratoxin a in fortified white grape wine sample using unmodified gold nanoparticles. Anal Sci. 2017;33(6):659–64. https://doi.org/10.2116/analsci.33.659.

    Article  CAS  PubMed  Google Scholar 

  27. Hao L, Wang W, Shen X, Wang SL, Li Q, An FL, Wu SJ. A fluorescent DNA hydrogel aptasensor based on the self-assembly of rolling circle amplification products for sensitive detection of Ochratoxin a. J Agric Food Chem. 2020;68(1):369–75. https://doi.org/10.1021/acs.jafc.9b06021.

    Article  CAS  PubMed  Google Scholar 

  28. Wu KF, Ma CB, Zhao H, Chen MJ, Deng ZY. Sensitive aptamer-based fluorescene assay for Ochratoxin a based on RNase H signal amplification. Food Chem. 2019;277(30):273–8. https://doi.org/10.1016/j.foodchem.2018.10.130.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao FC, Tian Y, Shen Q, Liu RX, Shi RR, Wang HM, Yang ZY. A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1. Talanta. 2019;195:55–61. https://doi.org/10.1016/j.talanta.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  30. Nonaka Y, Saito K, Hanioka N, Narimatsu S, Kataoka H. Determination of aflatoxins in food samples by automated on-line in-tubesolid-phase microextraction coupled with liquid chromatography–massspectrometry. J Chromatogr A. 2009;1216(20):4416–22. https://doi.org/10.1016/j.chroma.2009.03.035.

    Article  CAS  PubMed  Google Scholar 

  31. Lai WQ, Zeng Q, Tang J, Zhang MS, Tang DP (2018) A conventional chemical reaction for use in an unconventional assay: a colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive just-in-time generation of a MnO2 based nanocatalyst. Microchim Acta 185(2):92. https://doi.org/10.1007/s00604-017-2651-z.

  32. Goud KY, Hayat A, Catanante G, Satyanarayana M, Gobi KV, Marty JL. An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim Acta. 2017;244(1):96–103. https://doi.org/10.1016/j.electacta.2017.05.089.

    Article  CAS  Google Scholar 

  33. Li X, Yang L, Men C, Xie YF, Liu JJ, Zou HY, Li YF, Zhan L, Huang CZ. Photothermal soft nanoballs developed by loading plasmonic Cu2-XSe nanocrystals into liposomes for photothermal immunoassay of aflatoxin B1. Anal Chem. 2019;91(7):4444–50. https://doi.org/10.1021/acs.analchem.8b05031.

    Article  CAS  PubMed  Google Scholar 

  34. Tan HX, Ma L, Guo T, Zhou HY, Chen L, Zhang YH, Dai HJ, Yu Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Anal Chim Acta. 2019;1068(30):87–95. https://doi.org/10.1016/j.aca.2019.04.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Key Scientific and Technological Project of Henan Province (212102310001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguang Suo or Min Wei.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, Z., Liang, X., Jin, H. et al. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB1. Anal Bioanal Chem 413, 7587–7595 (2021). https://doi.org/10.1007/s00216-021-03723-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03723-8

Keywords

Navigation