Skip to main content
Log in

A Novel Fluorescent Aptasensor Based on Dual-labeled DNA Nanostructure for Simultaneous Detection of Ochratoxin A and Aflatoxin B1

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB1). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB1-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB1, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB1 was 0.03 ng/mL. The recoveries of OTA and AFB1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sun S, Zhao R, Xie Y, Liu Y (2019) Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control 100:183–188. https://doi.org/10.1016/j.foodcont.2019.01.014

    Article  CAS  Google Scholar 

  2. Tittlemier SA, Cramer B, Dall’Asta C, Iha MH, Lattanzio VMT, Malone RJ, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J (2019) Developments in mycotoxin analysis: an update for 2017–2018. World Mycotoxin J 12(1):3–29. https://doi.org/10.3920/wmj2018.2398

    Article  CAS  Google Scholar 

  3. Kolpin DW, Schenzel J, Meyer MT, Phillips PJ, Hubbard LE, Scott T-M, Bucheli TD (2014) Mycotoxins: Diffuse and point source contributions of natural contaminants of emerging concern to streams. Sci Total Environ 470:669–676. https://doi.org/10.1016/j.scitotenv.2013.09.062

    Article  CAS  PubMed  Google Scholar 

  4. Van Pamel E, Verbeken A, Vlaemynck G, De Boever J, Daeseleire E (2011) Ultrahigh-Performance Liquid Chromatographic-Tandem Mass Spectrometric Multimycotoxin Method for Quantitating 26 Mycotoxins in Maize Silage. J Agric Food Chem 59(18):9747–9755. https://doi.org/10.1021/jf202614h

    Article  CAS  PubMed  Google Scholar 

  5. Sun S, Zhao R, Xie Y, Liu Y (2021) Reduction of aflatoxin B1 by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128521

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu C, Cao Y, Zhao T, Wang X, Fang G, Wang S (2021) A Novel Multi-purpose MIP for SPE-HPLC and QCM Detection of Carbaryl Residues in Foods. Food Anal Methods 14(2):331–343. https://doi.org/10.1007/s12161-020-01875-4

    Article  Google Scholar 

  7. Xue X, Selvaraj JN, Zhao L, Dong H, Liu F, Liu Y, Li Y (2014) Simultaneous Determination of Aflatoxins and Ochratoxin A in Bee Pollen by Low-Temperature Fat Precipitation and Immunoaffinity Column Cleanup Coupled with LC-MS/MS. Food Anal Methods 7(3):690–696. https://doi.org/10.1007/s12161-013-9723-4

    Article  Google Scholar 

  8. Khoshbin Z, Abnous K, Taghdisi SM, Verdian A, Sameiyan E, Ramezani M, Alibolandi M (2022) An ultra-sensitive dual-responsive aptasensor with combination of liquid crystal and intercalating dye molecules: A food toxin case study. Food Chem. https://doi.org/10.1016/j.foodchem.2022.132265

    Article  PubMed  Google Scholar 

  9. Khoshbin Z, Abnous K, Taghdisi SM, Verdian A (2021) Liquid crystal-based biosensors as lab-on-chip tools: Promising for future on-site detection test kits. TrAC, Trends Anal Chem 142. https://doi.org/10.1016/j.trac.2021.116325

  10. Zhao F, Tian Y, Shen Q, Liu R, Shi R, Wang H, Yang Z (2019) A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1. Talanta 195:55–61. https://doi.org/10.1016/j.talanta.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y-K, Yan Y-X, Li S-Q, Wang H-a, Ji W-H, Sun J-H (2013) Simultaneous Quantitative Determination of Multiple Mycotoxins in Cereal and Feedstuff Samples by a Suspension Array Immunoassay. J Agric Food Chem 61(46):10948–10953. https://doi.org/10.1021/jf4036029

    Article  CAS  Google Scholar 

  12. Seok Y, Byun J-Y, Shim W-B, Kim M-G (2015) A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Anal Chim Acta 886:182–187. https://doi.org/10.1016/j.aca.2015.05.041

    Article  CAS  PubMed  Google Scholar 

  13. Zhu C, Liu D, Li Y, Shen X, Ma S, Liu Y, You T (2020) Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111814

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iliuk AB, Hu L, Tao WA (2011) Aptamer in Bioanalytical Applications. Anal Chem 83(12):4440–4452. https://doi.org/10.1021/ac201057w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang C, Wang Y, Marty J-L, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26(5):2724–2727. https://doi.org/10.1016/j.bios.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  16. Khoshbin Z, Moeenfard M, Abnous K, Taghdisi SM (2023) Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: Smartphone readout strategy for on-site food control. Food Chem. https://doi.org/10.1016/j.foodchem.2022.133983

    Article  PubMed  Google Scholar 

  17. Wei M, Xin L, Feng S, Liu Y (2020) Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Microchim Acta 187(2). https://doi.org/10.1007/s00604-019-4089-y

  18. Ren W, Pang J, Ma R, Liang X, Wei M, Suo Z, He B, Liu Y (2022) A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal Chim Acta. https://doi.org/10.1016/j.aca.2022.339566

    Article  PubMed  Google Scholar 

  19. Suo Z, Liang X, Jin H, He B, Wei M (2021) A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB. Anal Bioanal Chem 413(30):7587–7595. https://doi.org/10.1007/s00216-021-03723-8

    Article  CAS  PubMed  Google Scholar 

  20. Huang R, He N, Li Z (2018) Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosen Bioelectron 109:27–34. https://doi.org/10.1016/j.bios.2018.02.053

    Article  CAS  Google Scholar 

  21. Gong X, Zhou W, Li D, Chai Y, Xiang Y, Yuan R (2015) RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells. Biosen Bioelectron 71:98–102. https://doi.org/10.1016/j.bios.2015.04.003

    Article  CAS  Google Scholar 

  22. Xiong Z, Wang Q, Xie Y, Li N, Yun W, Yang L (2021) Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128122

    Article  PubMed  Google Scholar 

  23. Han B, Fang C, Sha L, Jalalah M, Al-Assiri MS, Harraz FA, Cao Y (2021) Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A. Food Chem. https://doi.org/10.1016/j.foodchem.2020.127827

    Article  PubMed  Google Scholar 

  24. Park Y, Lee CY, Kang S, Kim H, Park KS, Park HG (2018) Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction. Nanotechnology 29(8). https://doi.org/10.1088/1361-6528/aaa3a3

  25. Song X, Ding Q, Pu Y, Zhang J, Sun R, Yin L, Wei W, Liu S (2021) Application of the Dimeric G-Quadruplex and toehold-mediated strand displacement reaction for fluorescence biosensing of ochratoxin A. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2021.113537

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yin J, Liu Y, Wang S, Deng J, Lin X, Gao J (2018) Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification. Sens Actuators B 256:573–579. https://doi.org/10.1016/j.snb.2017.10.083

    Article  CAS  Google Scholar 

  27. Bader A, Cockroft SL (2020) Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices. Chem Commun 56(38):5135–5138. https://doi.org/10.1039/d0cc00882f

    Article  CAS  Google Scholar 

  28. Zhu X, Kou F, Xu H, Han Y, Yang G, Huang X, Chen W, Chi Y, Lin Z (2018) Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sens Actuators B 270:263–269. https://doi.org/10.1016/j.snb.2018.05.048

    Article  CAS  Google Scholar 

  29. Bonel L, Vidal JC, Duato P, Castillo JR (2011) An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens Bioelectron 26(7):3254–3259. https://doi.org/10.1016/j.bios.2010.12.036

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Hu X, Pei Y, Sun Y, Wang F, Song C, Yin M, Deng R, Li Z, Zhang G (2015) Selection of phage-displayed minotopes of ochratoxin A and its detection in cereal by ELISA. Anal Methods 7(5):1849–1854. https://doi.org/10.1039/c4ay02290d

    Article  CAS  Google Scholar 

  31. Lai W, Guo J, Wu Q, Chen Y, Cai Q, Wu L, Wang S, Song J, Tang D (2020) A novel colorimetric immunoassay based on enzyme-regulated instant generation of Turnbull’s blue for the sensitive determination of ochratoxin A. Analyst 145(6):2420–2424. https://doi.org/10.1039/c9an02447f

    Article  CAS  PubMed  Google Scholar 

  32. Huang L, Chen K, Zhang W, Zhu W, Liu X, Wang J, Wang R, Hu N, Suo Y, Wang J (2018) ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sens Actuators B 269:79–87. https://doi.org/10.1016/j.snb.2018.04.150

    Article  CAS  Google Scholar 

  33. Liu R, Li W, Cai T, Deng Y, Ding Z, Liu Y, Zhu X, Wang X, Liu J, Liang B, Zheng T, Li J (2018) TiO2 Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface. ACS Appl Mater Interfaces 10(17):14447–14453. https://doi.org/10.1021/acsami.8b01431

    Article  CAS  PubMed  Google Scholar 

  34. Wu K, Ma C, Zhao H, Chen M, Deng Z (2019) Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chem 277:273–278. https://doi.org/10.1016/j.foodchem.2018.10.130

    Article  CAS  PubMed  Google Scholar 

  35. Goud KY, Catanante G, Hayat A, Satyanarayana M, Gobi KV, Marty JL (2016) Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sens Actuators B 235:466–473. https://doi.org/10.1016/j.snb.2016.05.112

    Article  CAS  Google Scholar 

  36. Goud KY, Hayat A, Catanante G, Satyanarayana M, Gobi KV, Marty JL (2017) An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim Acta 244:96–103. https://doi.org/10.1016/j.electacta.2017.05.089

    Article  CAS  Google Scholar 

  37. Migliorini FL, dos Santos DM, Soares AC, Mattoso LHC, Oliveira Jr ON, Correa DS (2020) Design of a low-cost and disposable paper-based immunosensor for the rapid and sensitive detection of aflatoxin B1. Chemosensors 8(3). https://doi.org/10.3390/chemosensors8030087

  38. Lerdsri J, Chananchana W, Upan J, Sridara T, Jakmunee J (2020) Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles. Sens Actuators B. https://doi.org/10.1016/j.snb.2020.128356

    Article  Google Scholar 

  39. Guo M, Hou Q, Waterhouse GIN, Hou J, Ai S, Li X (2019) A simple aptamer-based fluorescent aflatoxin B1 sensor using humic acid as quencher. Talanta. https://doi.org/10.1016/j.talanta.2019.120131

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wei M, Zhao F, Xie Y (2020) A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection. Talanta. https://doi.org/10.1016/j.talanta.2019.120599

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Key Scientific and Technological Project of Henan Province (212102310001), the Special Project for Collaborative Innovation of Zhengzhou (21ZZXTCX15), and the Innovative Funds Plan of Henan University of Technology (2021ZKCJ13).

Author information

Authors and Affiliations

Authors

Contributions

Luyang Zhao: Investigation, Methodology, Validation and Writing-Original Draft. Xiujun Liang: Validation and Writing-Original Draft. Yong Liu: Supervision, Resources. Min Wei: Conceptualization, Methodology, Resources, Supervision and Funding acquisition. Huali Jin: Methodology, Resources, Supervision.

Corresponding author

Correspondence to Min Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Liang, X., Liu, Y. et al. A Novel Fluorescent Aptasensor Based on Dual-labeled DNA Nanostructure for Simultaneous Detection of Ochratoxin A and Aflatoxin B1. J Fluoresc 33, 1641–1650 (2023). https://doi.org/10.1007/s10895-022-03071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03071-5

Keywords

Navigation