Skip to main content
Log in

Lead toxicity in Lucilia cuprina and electrochemical analysis: a simple and low-cost alternative for forensic investigation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Entomotoxicology allows the detection and analysis of substances such as poisons, drugs, and metals in necrophagous insects using analytical protocols. In a forensic situation related to death by gunshot, the gunshot residue (GSR) is dispersed at the crime scene and may be consumed by necrophagous insects. Lead (Pb) is the most abundant metal in GSR samples and it can be determined using non-portable methods. However, the toxicity effects of GSR samples on Lucilia cuprina (Diptera: Calliphoridae) and the detection of Pb via portable electrochemical methods have not been investigated. This study describes for the first time the toxicity analysis of Pb on immature L. cuprina through their survival rate and influence of Pb on immature development. In addition, the bioaccumulation of Pb in the larvae samples was determined based on square wave anodic stripping voltammetry (SWASV) measurements. The results revealed a low limit of detection to Pb (6.5 μg L−1) and the analytical performance was satisfactory because it measures Pb levels in larvae exposed to a diet containing 50 μg Pb g−1. Furthermore, the levels of Pb influenced the survival rate and development time of the immature L. cuprina. Larvae exposed to a high concentration of the metal (50 μg Pb g −1) showed statistically significant changes (p < 0.05). The presence of Pb in immature L. cuprina can be used to estimate the post-mortem interval; thus, the present study provides important information in forensic entomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ludwig A, Fraser J. Effective use of forensic science in volume crime investigations: identifying recurring themes in the literature. Sci Justice. 2014;54:81–8. https://doi.org/10.1016/j.scijus.2013.09.006.

    Article  PubMed  Google Scholar 

  2. Hodecek J. Revisiting the concept of entomotoxicology. Forensic Sci Int Synerg. 2020;2:282–6. https://doi.org/10.1016/j.fsisyn.2020.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campobasso CP, Gherardi M, Caligara M, Sironi L, Introna F. Drug analysis in blowfly larvae and in human tissues: a comparative study. Int J Legal Med. 2004;118:210–4. https://doi.org/10.1007/s00414-004-0448-1.

    Article  PubMed  Google Scholar 

  4. Roeterdink EM, Dadour IR, Watling RJ. Extraction of gunshot residues from the larvae of the forensically important blowfly Calliphora dubia (Macquart) (Diptera: Calliphoridae). Int J Legal Med. 2004;118:63–70. https://doi.org/10.1007/s00414-003-0408-1.

    Article  PubMed  Google Scholar 

  5. Introna F, Pietro CC, Goff ML, Pietro C, Lee M. Entomotoxicology. Forensic Sci Int. 2001;120:42–7. https://doi.org/10.1016/S0379-0738(01)00418-2.

    Article  CAS  PubMed  Google Scholar 

  6. Campobasso C, Vella G, Intona F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120:18–27. https://doi.org/10.1109/CCECE.2006.277855.

    Article  CAS  PubMed  Google Scholar 

  7. Gosselin M, Wille SMR, Fernandez M del MR, Di Fazio V, Samyn N, De Boeck G, Bourel B. Entomotoxicology, experimental set-up and interpretation for forensic toxicologists. Forensic Sci Int. 2011;208:1–9. https://doi.org/10.1016/j.forsciint.2010.12.015.

    Article  CAS  PubMed  Google Scholar 

  8. Gagliano-candela R, Aventaggiato L. The detection of toxic substances in entomological specimens. Int J Legal Med. 2001;114:197–203.

    Article  CAS  Google Scholar 

  9. da Silva EIT, Wilhelmi B, Villet MH. Forensic entomotoxicology revisited—towards professional standardisation of study designs. Int J Legal Med. 2017;131:1399–412. https://doi.org/10.1007/s00414-017-1603-9.

    Article  PubMed  Google Scholar 

  10. Rocha ED, Sarkis JES, Carvalho MDFH, Vechio G, Canesso C. Occupational exposure to airborne lead in Brazilian police officers. Int J Hyg Environ Health. 2014:2013–5. https://doi.org/10.1016/j.ijheh.2013.12.004.

  11. Taudte RV, Roux C, Blanes L, Horder M, Kirkbride KP, Beavis A. The development and comparison of collection techniques for inorganic and organic gunshot residues. Anal Bioanal Chem. 2016;408:2567–76. https://doi.org/10.1007/s00216-016-9357-7.

    Article  CAS  PubMed  Google Scholar 

  12. Udey R, Huter B, Smith R. Differentiation of bullet type based on the analysis of gunshot residue using inductively coupled plasma mass spectrometry *. J Forensic Sci. 2011;56:1268–76. https://doi.org/10.1111/j.1556-4029.2011.01836.x.

    Article  CAS  PubMed  Google Scholar 

  13. MacAulay LE, Barr DG, Strongman DB. Effects of decomposition on gunshot wound characteristics: under moderate temperatures with insect activity. J Forensic Sci. 2009;54:443–7. https://doi.org/10.1111/j.1556-4029.2008.00979.x.

    Article  PubMed  Google Scholar 

  14. Rashid R, Arifuddin N, Ahmad N. Blowfly, Chrysomya megacephala as an alternative specimen in determination of gunshot residue. In: IEEE Symposium on Business, Engineering and Industrial Applications. 2012;542–547.

  15. Motta LC, Vanini G, Chamoun CA, Costa RA, Vaz BG, Costa HB, et al. Detection of Pb, Ba, and Sb in blowfly larvae of porcine tissue contaminated with gunshot residue by ICP OES. J Chem. 2015. https://doi.org/10.1155/2015/737913.

  16. Mahony AMO, Windmiller JR, Samek IA, Bandodkar AJ, Wang J. Electrochemistry communications “ swipe and scan ” : integration of sampling and analysis of gunshot metal residues at screen-printed electrodes. Electrochem Commun. 2012;23:52–5. https://doi.org/10.1016/j.elecom.2012.07.004.

    Article  CAS  Google Scholar 

  17. Zhu L, Xu L, Huang B, Jia N, Tan L, Yao S. Simultaneous determination of Cd ( II ) and Pb ( II ) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene- cysteine composite modified bismuth film electrode. Electrochim Acta. 2014;115:471–7. https://doi.org/10.1016/j.electacta.2013.10.209.

    Article  CAS  Google Scholar 

  18. Souza D, Machado S, Avanca L. Voltametria de onda quadrada, primeira parte: Aspectos teóricos. Quim Nova. 2003;26:81–9.

    Article  CAS  Google Scholar 

  19. Araujo W, Cardoso T, Rocha R, Santana R, Muñoz R, Richter E, et al. Portable analytical platforms for forensic chemistry: a review. Anal Chim Acta. 2018;1034:1–21. https://doi.org/10.1016/j.aca.2018.06.014.

    Article  CAS  PubMed  Google Scholar 

  20. Rocha D, Dornellas RM, Nossol E, Richter EM, Silva SG. Electrochemically reduced graphene oxide for forensic electrochemistry : detection of cocaine and its adulterants paracetamol, caffeine and levamisole. Electroanalysis. 2017;29:1–6. https://doi.org/10.1002/elan.201700437.

    Article  CAS  Google Scholar 

  21. Silva-Neto HDA, Cardoso TMG, Coltro WKT, Urban RC. Determination of bioavailable lead in atmospheric aerosols using unmodified screen-printed carbon electrodes. Anal Methods. 2019;11:4875–81. https://doi.org/10.1039/c9ay01301f.

    Article  CAS  Google Scholar 

  22. Barros de Carvalho CJ, de Mello-Patiu CA. Key to the adults of the most common forensic species of Diptera in South America. Rev Bras Entomol. 2008;52:390–406. https://doi.org/10.1590/S0085-56262008000300012.

    Article  Google Scholar 

  23. Kosmann C, de Mello RP, Harterreiten-Souza ÉS, Pujol-Luz JR. A list of current valid blow fly names (Diptera: Calliphoridae) in the Americas South of Mexico with key to the Brazilian species. EntomoBrasilis. 2013;6:74–85. https://doi.org/10.12741/ebrasilis.v6i1.266.

    Article  Google Scholar 

  24. Yang YQ, Li XB, Shao RY, Lyu Z, Li HW, Li GP, et al. Developmental times of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) at constant temperatures and applications in forensic entomology. J Forensic Sci. 2016;61:1278–84. https://doi.org/10.1111/1556-4029.13159.

    Article  PubMed  Google Scholar 

  25. Leal JLF, Costa IT, Suzana DO, Aguiar CD, Carneiro S, Arlene II. Estimativa do intervalo pós morte em cadáveres congelados através da entomologia. Rev.ista Circ Traumatol Buco-Maxilo-Fac. Camaragibe. 2013;13:41–8.

    Google Scholar 

  26. Estrada DA, Grella MD, Thyssen PJ, Linhares AX. Taxa de desenvolvimento de Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) em dieta artificial acrescida de tecido animal para uso forense. Neotrop Entomol. 2009;38:203–7. https://doi.org/10.1590/S1519-566X2009000200006.

    Article  PubMed  Google Scholar 

  27. Lagoo L, Schaeffer LS, Szymanski DW, Smith RW. Detection of gunshot residue in blowfly larvae and decomposing porcine tissue using inductively coupled plasma mass spectrometry (ICP-MS). J Forensic Sci. 2010;55:624–32. https://doi.org/10.1111/j.1556-4029.2010.01327.x.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Wang H, Zhang Z, Liu G. Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode. Sensors Actuators B. 2014;199:7–14. https://doi.org/10.1016/j.snb.2014.03.092.

    Article  CAS  Google Scholar 

  29. Palomo-Marín MR, Rueda-Holgado F, Marín-Expósito J, Pinilla-Gil E. Disposable sputtered-bismuth screen-printed sensors for voltammetric monitoring of cadmium and lead in atmospheric particulate matter samples. Talanta. 2017;175:313–7. https://doi.org/10.1016/j.talanta.2017.07.060.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Lu J, Hocevar SB, Farias PAM, Ogorevc B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem. 2000;72:3218–22. https://doi.org/10.1021/ac000108x.

    Article  CAS  PubMed  Google Scholar 

  31. Han X, Meng Z, Zhang H, Zheng J. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg ( II ), Cu ( II ), Pb ( II ) and Cd ( II ) in foodstuff. Microchim Acta. 2018;2:1–9.

    Google Scholar 

  32. Zidarič T, Jovanovski V, Menart E, Zorko M, Kolar M, Veber M, et al. Multi-pulse galvanostatic preparation of nanostructured bismuth film electrode for trace metal detection. Sensors Actuators B. 2017;245:720–5. https://doi.org/10.1016/j.snb.2017.01.162.

    Article  CAS  Google Scholar 

  33. Woolever CA, Dewald HD. Differential pulse anodic stripping voltammetry of barium and lead in gunshot residues. Forensic Sci Int. 2001;117:185–90. https://doi.org/10.1016/S0379-0738(00)00402-3.

    Article  CAS  PubMed  Google Scholar 

  34. Ott CE, Dalzell KA, Calderón-Arce PJ, Alvarado-Gámez AL, Trejos T, Arroyo LE. Evaluation of the simultaneous analysis of organic and inorganic gunshot residues within a large population data set using electrochemical sensors*,†. J Forensic Sci. 2020;65:1935–44. https://doi.org/10.1111/1556-4029.14548.

    Article  CAS  PubMed  Google Scholar 

  35. Castro SVF, Lima AP, Rocha RG, Cardoso RM, Montes RHO, Santana MHP, et al. Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Anal Chim Acta. 2020;1130:126–36. https://doi.org/10.1016/j.aca.2020.07.033.

    Article  CAS  PubMed  Google Scholar 

  36. Rattanarat P, Dungchai W, Cate D, Volckens J, Chailapakul O, Henry CS. Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal Chem. 2014;86:3555–62. https://doi.org/10.1021/ac5000224.

    Article  CAS  PubMed  Google Scholar 

  37. Moe SJ, Stenseth NC, Smith RH. Effects of a toxicant on population growth rates: sublethal and delayed responses in blowfly populations. Funct Ecol. 2001;15:712–21. https://doi.org/10.1046/j.0269-8463.2001.00575.x.

    Article  Google Scholar 

  38. Mogren CL, Trumble JT. The impacts of metals and metalloids on insect behavior. Entomol Exp Appl. 2010;135:1–17. https://doi.org/10.1111/j.1570-7458.2010.00967.x.

    Article  CAS  Google Scholar 

  39. Rezende F, Alonso MA, Souza CM, Thyssen PJ, Linhares AX. Developmental rates of immatures of three Chrysomya species (Diptera: Calliphoridae) under the effect of methylphenidate hydrochloride, phenobarbital, and methylphenidate hydrochloride associated with phenobarbital. Parasitol Res. 2014;113:1897–907. https://doi.org/10.1007/s00436-014-3837-5.

    Article  PubMed  Google Scholar 

  40. Van der Fels-klerx H, Camenzuli L, van der Lee M, Oonincx D. Uptake of cadmium , lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLoS One. 2016;15. https://doi.org/10.1371/journal.pone.0166186.

Download references

Acknowledgements

The authors would like to thank CAPES (grant 3363/2014) and CNPq (grants 426496/2018-3 and 142412/2020-1) and lastly M.Sc. Igor Santos Oliveira for his contributions to the present study.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the research and went to field to perform the experiments. The first author wrote a first version of the paper and all authors contributed equally to reviewing critically the manuscript for important intellectual content. All authors approved the final version of this manuscript.

Corresponding author

Correspondence to Habdias de A. Silva-Neto.

Ethics declarations

No humans or animals were used in this study. The meat used during the experiments was purchased from grocery stores.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, B.G.d.O., Silva-Neto, H.d.A., Coltro, W.K.T. et al. Lead toxicity in Lucilia cuprina and electrochemical analysis: a simple and low-cost alternative for forensic investigation. Anal Bioanal Chem 413, 3201–3208 (2021). https://doi.org/10.1007/s00216-021-03257-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03257-z

Keywords

Navigation