Skip to main content
Log in

The development and comparison of collection techniques for inorganic and organic gunshot residues

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection and interpretation of gunshot residues (GSR) plays an important role in the investigation of firearm-related events. Commonly, the analysis focuses on inorganic particles incorporating elements derived from the primer. However, recent changes in ammunition formulations and possibility that particles from non-firearm sources can be indistinguishable from certain primer particles challenge the standard operational protocol and call for adjustments, namely the combination of inorganic and organic GSR analysis. Two protocols for the combined collection and subsequent analysis of inorganic and organic GSR were developed and optimised for 15 compounds potentially present in organic GSR (OGSR). These protocols were conceptualised to enable OGSR analysis by ultrahigh-performance liquid chromatography (UHPLC) coupled with UV detection and triple quadrupole tandem mass spectrometry (confirmation) and IGSR analysis by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Using liquid extraction, the extraction recoveries from spiked swabs and stubs were ~80 % (50–98 % for swabs, 64–98 % for stubs). When the mixed OGSR standard was applied to the hands and recovered in the way that is usual for IGSR collection, GSR stubs performed significantly better than swabs (~30 %) for the collection of OGSR. The optimised protocols were tested and compared for combined OGSR and inorganic GSR analysis using samples taken at a shooting range. The most suitable protocol for combined collection and analysis of IGSR and OGSR involved collection using GSR stubs followed by SEM-EDX analysis and liquid extraction using acetone followed by analysis with UHPLC.

Development and comparison of two collection protocols for OGSR and IGSR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meng H-h, Caddy B. Gunshot residue analysis—a review. J Forensic Sci. 1997;42(4):553–70.

    Article  CAS  Google Scholar 

  2. Zeichner A. Recent developments in methods of chemical analysis in investigations of firearm-related events. Anal Bioanal Chem. 2003;376(8):1178–91. doi:10.1007/s00216-003-1994-y.

    Article  CAS  Google Scholar 

  3. Niewoehner L (2008) Guide for gunshot residue analysis by scanning electron microscopy/energy-dispersive X-ray spectrometry. Paper presented at the ENFSI, Prague

  4. Martiny A, Campos APC, Sader MS, Pinto MAL. SEM/EDS analysis and characterization of gunshot residues from Brazilian lead-free ammunition. Forensic Sci Int. 2008;177(1):e9–17. doi:10.1016/j.forsciint.2007.07.005.

    Article  Google Scholar 

  5. Wildlife CDoFa. http://www.dfg.ca.gov/wildlife/hunting/lead-free/. Accessed 22.10. 2014

  6. Chiaramonte P (2013). http://www.foxnews.com/us/2013/12/21/end-line-for-lead-bullet-regulations-bans-force-switch-to-green-ammo/. Accessed 22.10. 2014.

  7. Abrego Z, Grijalba N, Unceta N, Maguregui M, Sanchez A, Fernandez-Isla A, et al. A novel method for the identification of inorganic and organic gunshot residue particles of lead-free ammunitions from the hands of shooters using scanning laser ablation-ICPMS and Raman micro-spectroscopy. Analyst. 2014;139(23):6232–41. doi:10.1039/C4AN01051E.

    Article  CAS  Google Scholar 

  8. Bueno J, Lednev IK. Raman microspectroscopy chemical mapping and chemometric classification for the identification of gunshot residue on adhesive tape. Anal Bioanal Chem. 2014;406:4595–9.

    Article  CAS  Google Scholar 

  9. Torre C, Mattutino G, Vasino V, Robino C. Brake linings: a source of non-GSR particles containing lead, barium, and antimony. J Forensic Sci. 2002;47(3):494–504.

    CAS  Google Scholar 

  10. Mosher PV, McVicar MJ, Randall ED, Slid EH. Gunshot residue-similar particles produced by fireworks. J Can Soc Forensic Sci. 1998;31:157–68.

    Article  CAS  Google Scholar 

  11. Garofano L, Capra M, Ferrari F, Bizzaro GP, Di Tullio D, Dell’Olio M, et al. Gunshot residue: further studies on particles of environmental and occupational origin. Forensic Sci Int. 1999;103(1):1–21.

    Article  CAS  Google Scholar 

  12. Wallace JS, McQuillan J. Discharge residues from cartridge-operated industrial tools. J Forensic Sci Soc. 1984;24(5):495–508. doi:10.1016/s0015-7368(84)72329-2.

    Article  CAS  Google Scholar 

  13. Zeichner A, Eldar B. A novel method for extraction and analysis of gunpowder residues on double-side adhesive coated stubs. J Forensic Sci. 2004;49(6):1194–206.

    Article  CAS  Google Scholar 

  14. Dalby O, Butler D, Birkett JW. Analysis of gunshot residue and associated materials—a review. J Forensic Sci. 2010;55(4):924–43. doi:10.1111/j.1556-4029.2010.01370.x.

    Article  Google Scholar 

  15. Taudte RV, Roux C, Bishop D, Blanes L, Doble P, Beavis A. Development of a UHPLC method for the detection of organic gunshot residues using artificial neural networks. Anal Methods. 2015. doi:10.1039/C5AY00306G.

    Google Scholar 

  16. Laza D, Nys B, Kinder JD, Kirsch-De Mesmaeker A, Moucheron C (2007) Development of a quantitative LC-MS/MS method for the analysis of common propellant powder stabilizers in gunshot residue*. Journal of Forensic Sciences 52 (4):842–850. doi:10.1111/j.1556-4029.2007.00490.x.

  17. Moran JW, Bell S. Skin permeation of organic gunshot residue: implications for sampling and analysis. Anal Chem. 2014;86(12):6071–9. doi:10.1021/ac501227e.

    Article  CAS  Google Scholar 

  18. Zhao M, Zhang S, Yang C, Xu Y, Wen Y, Sun L, et al. Desorption electrospray tandem MS (DESI-MSMS) analysis of methyl centralite and ethyl centralite as gunshot residues on skin and other surfaces. J Forensic Sci. 2008;53(4):807–11. doi:10.1111/j.1556-4029.2008.00752.x.

    Article  CAS  Google Scholar 

  19. Arndt J, Bell S, Crookshanks L, Lovejoy M, Oleska C, Tulley T, et al. Preliminary evaluation of the persistence of organic gunshot residue. Forensic Sci Int. 2012;222(1–3):137–45.

    Article  CAS  Google Scholar 

  20. Tong Y, Wu Z, Yang C, Yu J, Zhang X, Yang S, et al. Determination of diphenylamine stabilizer and its nitrated derivatives in smokeless gunpowder using a tandem MS method. Analyst. 2001;126(4):480–4.

    Article  CAS  Google Scholar 

  21. Thomas JL, Lincoln D, McCord BR. Separation and detection of smokeless powder additives by ultra performance liquid chromatography with tandem mass spectrometry (UPLC/MS/MS). J Forensic Sci. 2013;58(3):609–15. doi:10.1111/1556-4029.12096.

    Article  CAS  Google Scholar 

  22. MacCrehan WA, Smith KD, Rowe WF. Sampling protocols for the detection of smokeless powder residues using capillary electrophoresis. J Forensic Sci. 1998;43(1):119–24.

    Article  CAS  Google Scholar 

  23. Lloyd JBF, King RM. One-pot processing of swabs for organic explosives and firearms residue traces. J Forensic Sci. 1990;35(4):956–9.

    Article  CAS  Google Scholar 

  24. Speers SJ, Doolan K, McQuillan J, Wallace JS. Evaluation of improved methods for the recovery and detection of organic and inorganic cartridge discharge residues. J Chromatogr A. 1994;674(1–2):319–27.

    Article  CAS  Google Scholar 

  25. Zeichner A, Eldar B, Glattstein B, Koffman A, Tamiri T, Muller D. Vacuum collection of gunpowder residues from clothing worn by shooting suspects, and their analysis by GC/TEA, IMS and GC/MS. J Forensic Sci. 2003;48(5):961–72.

    Article  CAS  Google Scholar 

  26. Dalby O, Birkett JW. The evaluation of solid phase micro-extraction fibre types for the analysis of organic components in unburned propellant powders. J Chromatogr A. 2010;1217(46):7183–8. doi:10.1016/j.chroma.2010.09.012.

    Article  CAS  Google Scholar 

  27. Romolo SF, Margot P. Identification of gunshot residue: a critical review. Forensic Sci Int. 2001;119(2):195–211. doi:10.1016/s0379-0738(00)00428-x.

    Article  Google Scholar 

  28. Zeichner A, Abramovich-Bar S, Tamiri T, Almog J. A feasibility study on the use of double-sided adhesive coated stubs for sampling of explosive traces from hands. Forensic Sci Int. 2009;184(1):42–6.

    Article  CAS  Google Scholar 

  29. McCord B, Thomas J (2013) Rapid screening and confirmation of organic GSR using electrospray mass spectrometry. U.S. Department of Justice

  30. Benito S, Abrego Z, Sánchez A, Unceta N, Goicolea MA, Barrio RJ. Characterization of organic gunshot residues in lead-free ammunition using a new sample collection device for liquid chromatography–quadrupole time-of-flight mass spectrometry. Forensic Sci Int. 2015;246:79–85. doi:10.1016/j.forsciint.2014.11.002.

    Article  CAS  Google Scholar 

  31. Morelato M, Beavis A, Ogle A, Doble P, Kirkbride P, Roux C. Screening of gunshot residues using desorption electrospray ionisation–mass spectrometry (DESI–MS). Forensic Sci Int. 2012;217(1–3):101–6. doi:10.1016/j.forsciint.2011.10.030.

    Article  CAS  Google Scholar 

  32. Bueno J, Lednev I. Advanced statistical analysis and discrimination of gunshot residue implementing combined Raman and FTIR data. Anal Methods. 2013. doi:10.1039/C3AY40721G.

    Google Scholar 

  33. Song-im N, Benson S, Lennard C. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci Int. 2012;222(1–3):102–10. doi:10.1016/j.forsciint.2012.05.006.

    Article  CAS  Google Scholar 

  34. DeTata DA, Collins PA, McKinley AJ. A comparison of solvent extract cleanup procedures in the analysis of organic explosives. J Forensic Sci. 2013;58(2):500–7. doi:10.1111/1556-4029.12035.

    Article  CAS  Google Scholar 

  35. Crowson CA, Cullum HE, Hiley RW, Lowe AM. A survey of high explosives traces in public places. J Forensic Sci. 1996;41(6):980–9.

    Article  CAS  Google Scholar 

  36. Douse JMF. Trace analysis of explosives at the low nanogram level in handswab extracts using columns of amberlite xad-7 porous polymmer beads and silica capillary column gas chromatography with thermal energy analysis and electron-capture detection. J Chromatogr A. 1985;328:155–65. doi:10.1016/s0021-9673(01)87387-8.

    Article  CAS  Google Scholar 

  37. Twibell JD, Home JM, Smalldon KW, Higgs DG, Hayes TS. Assessment of solvents for the recovery of nitroglycerine from hands using cotton swabs. J Forensic Sci. 1982;27(4):792–800.

    CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by a Premier’s Research and Industry Fund grant provided by the South Australian Government Department of Further Education, Employment, Science and Technology.

The authors would like to thank the NSW Police for the great support and help at the shooting range including the provision of expertise, firearms and ammunition.

Furthermore, the authors are grateful to Dr. Richard Wuhrer and Ken Mason for their support and help with the SEM software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Beavis.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taudte, R.V., Roux, C., Blanes, L. et al. The development and comparison of collection techniques for inorganic and organic gunshot residues. Anal Bioanal Chem 408, 2567–2576 (2016). https://doi.org/10.1007/s00216-016-9357-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9357-7

Keywords

Navigation