Skip to main content
Log in

Development and validation of a selective SPR aptasensor for the detection of anticancer drug irinotecan in human plasma samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a surface plasmon resonance (SPR)-based assay for the quantification of antineoplastic drug irinotecan in human plasma samples has been developed for the first time. The selective binding of irinotecan with an aptamer receptor, operating in human plasma, allowed to set-up a novel analytical methodology to detect the drug in the analytical range of interest by using SPR as detection technique. After hybridizing the aptamer to the sensing platform and optimizing the sample preparation procedure, a quantitative assay was validated according to FDA regulatory guidelines. The analytical working range was found between 100 and 7500 ng mL−1 with negligible interferences from plasma components and co-medication associated with the administration of irinotecan. The utility of the new SPR assay was confirmed by analyzing plasma samples in parallel with LC-MS as reference technique, providing a new analytical tool for the therapeutic drug monitoring of irinotecan in patients under chemotherapy regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Conti JA, Kemeny NE, Saltz LB, Huang Y, Tong WP, Chou TC, et al. Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol. 1996;14:709–15.

    Article  CAS  Google Scholar 

  2. Rothenberg ML, Eckardt JR, Kuhn JG, Burris HA, Nelson J, Hilsenbeck SG, et al. Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol. 1996;14:1128–35.

    Article  CAS  Google Scholar 

  3. Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22:229–37.

    Article  CAS  Google Scholar 

  4. Guo Y, Shi M, Shen X, Yang C, Yang L, Zhang J. Capecitabine plus irinotecan versus 5-FU/leucovorin plus irinotecan in the treatment of colorectal cancer: a meta-analysis. Clin Colorectal Cancer. 2014;13:110–8.

    Article  Google Scholar 

  5. Chen K, Gong Y, Zhang Q, Shen Y, Zhou T. Efficacy and safety of addition of bevacizumab to FOLFIRI or irinotecan/bolus 5-FU/LV (IFL) in patients with metastatic colorectal cancer: a meta-analysis. Medicine (Baltimore). 2016;95:e5221. https://doi.org/10.1097/MD.0000000000005221.

    Article  CAS  Google Scholar 

  6. Kotaka M, Xu R, Muro K, Park YS, Morita S, Iwasa S, et al. Study protocol of the Asian XELIRI ProjecT (AXEPT): a multinational, randomized, non-inferiority, phase III trial of second-line chemotherapy for metastatic colorectal cancer, comparing the efficacy and safety of XELIRI with or without bevacizumab versus. Chin J Cancer. 2016;35:102. https://doi.org/10.1186/s40880-016-0166-3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ohtsuka K, Inoue S, Kameyama M, Kanetoshi A, Fujimoto T, Takaoka K, et al. Intracellular conversion of irinotecan to its active form, SN-38, by native carboxylesterase in human non-small cell lung cancer. Lung Cancer. 2003;41:187–98.

    Article  Google Scholar 

  8. Martino E, Della Volpe S, Terribile E, Benetti E, Sakaj M, Centamore A, et al. The long story of camptothecin: from traditional medicine to drugs. Bioorg Med Chem Lett. 2017;27:701–7.

    Article  CAS  Google Scholar 

  9. Liu LF. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–75.

    Article  CAS  Google Scholar 

  10. Hsiang YH, Liu LF, Wall ME, Wani MC, Nicholas AW, Manikumai G, et al. DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. Cancer Res. 1989;49:4385–9.

    CAS  PubMed  Google Scholar 

  11. Mathijssen RHJ, Van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7:2182–94.

    CAS  PubMed  Google Scholar 

  12. Marangon E, Posocco B, Mazzega E, Toffoli G. Development and validation of a high-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of Irinotecan and its main metabolites in human plasma and its application in a clinical pharmacokinetic study. PLoS One. 2015;10:1–18. https://doi.org/10.1371/journal.pone.0118194.

    Article  CAS  Google Scholar 

  13. Canal P, Gay C, Dezeuze A, Douillard JY, Bugat R, Brunet R, et al. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and Molecular Mechanisms Group of the European Organization for Research and Treatment of Cancer. J Clin Oncol. 1996;14:2688–95.

    Article  CAS  Google Scholar 

  14. Chabot GG. Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet. 1997;33:245–59.

    Article  CAS  Google Scholar 

  15. Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, et al. Review of therapeutic drug monitoring of anticancer drugs part two - targeted therapies. Eur J Cancer. 2014;50:2020–36.

    Article  CAS  Google Scholar 

  16. Meneghello A, Tartaggia S, Alvau MD, Polo F, Toffoli G. Biosensing technologies for therapeutic drug monitoring. Curr Med Chem. 2018;25:4354–77.

    Article  CAS  Google Scholar 

  17. Bardin S, Guo W, Johnson JL, Khan S, Ahmad A, Duggan JX, et al. Liquid chromatographic-tandem mass spectrometric assay for the simultaneous quantification of Camptosar® and its metabolite SN-38 in mouse plasma and tissues. J Chromatogr A. 2005:249–55.

  18. D’Esposito F, Tattam BN, Ramzan I, Murray M. A liquid chromatography/electrospray ionization mass spectrometry (LC-MS/MS) assay for the determination of irinotecan (CPT-11) and its two major metabolites in human liver microsomal incubations and human plasma samples. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875:522–30.

    Article  Google Scholar 

  19. Alvau MD, Tartaggia S, Meneghello A, Casetta B, Calia G, Serra PA, et al. Enzyme-based electrochemical biosensor for therapeutic drug monitoring of anticancer drug irinotecan. Anal Chem. 2018;90:6012–9.

    Article  CAS  Google Scholar 

  20. Idili A, Arroyo-Currás N, Ploense KL, Csordas AT, Kuwahara M, Kippin TE, et al. Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan: in situ in the living body. Chem Sci. 2019;10:8164–70.

    Article  CAS  Google Scholar 

  21. Temerk YM, Ibrahim H, Schuhmann W. Square wave cathodic adsorptive stripping voltammetric determination of the anticancer drugs flutamide and irinotecan in biological fluids using renewable pencil graphite electrodes. Electroanalysis. 2016;28:372–9.

    Article  CAS  Google Scholar 

  22. Hatamluyi B, Es’haghi Z, Modarres Zahed F, Darroudi M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of irinotecan and 5-fluorouracil in biological samples. Sensors Actuators B Chem. 2019;286:540–9.

    Article  CAS  Google Scholar 

  23. Bonazza G, Tartaggia S, Toffoli G, Polo F, Daniele S. A fast method for the detection of irinotecan in plasma samples by combining solid phase extraction and differential pulse voltammetry. Anal Bioanal Chem. 2020;412:1585–95.

    Article  CAS  Google Scholar 

  24. Tartaggia S, Alvau MD, Meneghello A, Casetta B, Polo F, Toffoli G. Practical fluorimetric assay for the detection of anticancer drug SN-38 in human plasma. J Pharm Biomed Anal. 2018;159:73–81.

    Article  CAS  Google Scholar 

  25. Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nat Rev Chem. 2017;1:0076. https://doi.org/10.1038/s41570-017-0076.

    Article  CAS  Google Scholar 

  26. Hearty S, Leonard P, Ma H, O’Kennedy R. Measuring antibody-antigen binding kinetics using surface plasmon resonance. In: Nevoltris D, Chames P, editors. Antibody engineering. methods in molecular biology, vol. 1827. New York: Humana Press; 2018. p. 421–55. https://doi.org/10.1007/978-1-4939-8648-4_22.

    Chapter  Google Scholar 

  27. Cannon MJ, Papalia GA, Navratilova I, Fisher RJ, Roberts LR, Worthy KM, et al. Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology. Anal Biochem. 2004;330:98–113.

    Article  CAS  Google Scholar 

  28. Chang AL, McKeague M, Liang JC, Smolke CD. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal Chem. 2014;86:3273–8.

    Article  CAS  Google Scholar 

  29. Bialas K, Reinemann C, Barnes E, Bunka D, Tolley A Aptamer against irinotecan. Patent Application WO2020128421 A1, 2020.

  30. Food and Drug Administration, in: Guidance for Industry Bioanalytical Method Validation draft guidance. 2013. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf. Accessed 9 May 2017.

  31. Liu Y, Wilson WD. Quantitative analysis of small molecule–nucleic acid interactions with a biosensor surface and surface plasmon resonance detection. In: Fox K, editor. Drug-DNA interaction protocols. Methods in Molecular Biology (Methods and Protocols), vol. 613. New York: Humana Press; 2010. p. 1–23. https://doi.org/10.1007/978-1-60327-418-0_1.

    Chapter  Google Scholar 

  32. Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem. 2012;415697:1–14. https://doi.org/10.1155/2012/415697.

    Article  CAS  Google Scholar 

  33. Combes O, Barré J, Duché JC, Vernillet L, Archimbaud Y, Marietta MP, et al. In vitro binding and partitioning of irinotecan (CPT-11) and its metabolite, SN-38, in human blood. Investig New Drugs. 2000;18:1–5. https://doi.org/10.1023/A:1006379730137.

    Article  CAS  Google Scholar 

  34. Situ C, Wylie ARG, Douglas A, Elliott CT. Reduction of severe bovine serum associated matrix effects on carboxymethylated dextran coated biosensor surfaces. Talanta. 2008;76:832–6.

    Article  CAS  Google Scholar 

  35. Azadeh M, Gorovits B, Kamerud J, MacMannis S, Safavi A, Sailstad J, et al. Calibration curves in quantitative ligand binding assays: recommendations and best practices for preparation, design, and editing of calibration curves. AAPS J. 2018;20:22. https://doi.org/10.1208/s12248-017-0159-4.

    Article  CAS  Google Scholar 

  36. Corona G, Elia C, Casetta B, Toffoli G. Fast liquid chromatography-tandem mass spectrometry method for routine assessment of irinotecan metabolic phenotype. Ther Drug Monit. 2010;32:638–46.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Italian Ministry of Health (Ricerca Corrente). We acknowledge Regione Friuli-Venezia-Giulia trough the POR FESR 2014–2020 (project “Nano Diagnostics and Automated Tools for Oncology,” NADIATools) and the grant AIRC 5X1000 (Rif. 12214) “Application of advanced nanotechnology in the development of innovative cancer diagnostics tools” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Tartaggia.

Ethics declarations

Conflict of interest

D. Bunka is a Co-founder and Director of Aptamer Group and therefore has financial interest in Aptamer Group Ltd. A. Puscasu, M. Zanchetta, B. Posocco, S. Tartaggia, and G. Toffoli have no conflicts to declare regarding the publication of this manuscript.

Ethics approval

Plasma samples were collected from patients enrolled in a phase Ib clinical study (CRO-2009-25, Prot. n. 0041793(09)-PRE.21-984) approved by the ethics committee of CRO-National Cancer Institute of Aviano (Italy) and by Istituto Superiore di Sanità (ISS, Italy), which was conducted according to the principles expressed in the Declaration of Helsinki. Informed consent was obtained from all participants involved in the study.

Source of biological material

Control human plasma stabilized with K2EDTA for the preparation of daily standard calibration curves and quality control (QC) samples was obtained from healthy volunteers and was provided by the Transfusion Unit of the Centro di Riferimento Oncologico di Aviano (CRO), Italy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 682 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puscasu, A., Zanchetta, M., Posocco, B. et al. Development and validation of a selective SPR aptasensor for the detection of anticancer drug irinotecan in human plasma samples. Anal Bioanal Chem 413, 1225–1236 (2021). https://doi.org/10.1007/s00216-020-03087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03087-5

Keywords

Navigation