Skip to main content
Log in

Water-soluble ZnCuInSe quantum dots for bacterial classification, detection, and imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacteria are everywhere and pose severe threats to human health and safety. The rapid classification and sensitive detection of bacteria are vital steps of bacterial community research and the treatment of infection. Herein, we developed optical property–superior and heavy metal–free ZnCuInSe quantum dots (QDs) for achieving rapid discrimination of Gram-positive/Gram-negative bacteria by the naked eye; driven by the structural differences of bacteria, ZnCuInSe QDs are effective in binding to Gram-positive bacteria, especially Staphylococcus aureus (S. aureus), in comparison with Gram-negative bacteria and give discernable color viewed by the naked eye. Meanwhile, based on its distinctive fluorescence response, the accurate quantification of S. aureus was investigated with a photoluminescence system in the concentration ranges of 1 × 103 to 1 × 1011 CFU/mL, with a limit of detection of 1 × 103 CFU/mL. Furthermore, we demonstrated the feasibility of ZnCuInSe QDs as a fluorescence probe for imaging S. aureus. This simple strategy based on ZnCuInSe QDs provides an unprecedented step for rapid and effective bacterial discrimination, detection, and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, McLean KM, et al. Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 2014;32:82–90.

    Article  CAS  Google Scholar 

  2. Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM. Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev. 2017;46:1272–83.

    Article  CAS  Google Scholar 

  3. Kwon HY, Liu X, Choi EG, Lee JY, Choi SY, Kim JY, et al. Development of a universal fluorescent probe for Gram-positive bacteria. Angew Chem Int Edit. 2019;58:8426–31.

    Article  CAS  Google Scholar 

  4. Kim JH, Grant SB. Public mis-notification of coastal water quality: a probabilistic evaluation of posting errors at Huntington Beach, California. Environ Sci Technol. 2004;38:2497–504.

    Article  CAS  Google Scholar 

  5. Maalouf R, Fournier WC, Coste J, Chebib H, Saïkali Y, Vittori O, et al. Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Anal Chem. 2007;79(13):4879–86.

    Article  CAS  Google Scholar 

  6. Lisalova VH, Visova I, Ermini ML, Springer T, Song XC, Mrazek J, et al. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90.

    Article  Google Scholar 

  7. Wang YX, Ye ZZ, Si CY, Ying YB. Monitoring of Escherichia coli O157:H7 in food samples using lectin based surface plasmon resonance biosensor. Food Chem. 2013;136(3–4):1303–8.

    Article  CAS  Google Scholar 

  8. Gao WC, Li B, Yao RZ, Li ZP, Wang XW, Dong XL, et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis. Anal Chem. 2017;89(18):9836–42.

    Article  CAS  Google Scholar 

  9. Preciado-Flores S, Wheeler DA, Tran TM, Tanaka Z, Jiang C, Barboza-Flores M, et al. SERS spectroscopy and SERS imaging of Shewanella oneidensis using silver nanoparticles and nanowires. Chem Commun. 2011;47(14):4129–31.

    Article  CAS  Google Scholar 

  10. Yang X, Gu C, Qian F, Li Y, Zhang JZ. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem. 2011;83(15):5888–94.

    Article  CAS  Google Scholar 

  11. Tamminen M, Joutsjoki T, Sjoblom M, Joutsen M, Palva A, Ryhanen EL, et al. Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR-ELISA. Lett Appl Microbiol. 2004;39(5):439–44.

    Article  CAS  Google Scholar 

  12. Chen R, Huang XL, Xu HY, Xiong YH, Li YB. Plasmonic enzyme-linked immunosorbent assay using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of Listeria monocytogenes. ACS Appl Mater Interfaces. 2015;7(51):28632–9.

    Article  CAS  Google Scholar 

  13. Zhu YD, Gasilova N, Jovic M, Qiao L, Liu BH, Lovey LT, et al. Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Chem Sci. 2018;9(8):2212–21.

    Article  CAS  Google Scholar 

  14. Steil D, Pohlentz G, Legros N, Mormann M, Mellmann A, Karch H, et al. Combining mass spectrometry, surface acoustic wave interaction analysis, and cell viability assays for characterization of Shiga toxin subtypes of pathogenic Escherichia coli bacteria. Anal Chem. 2018;90(15):8989–97.

    Article  CAS  Google Scholar 

  15. Yin BF, Wang Y, Dong ML, Wu J, Ran B, Xie MX, et al. One-step multiplexed detection of foodborne pathogens: combining a quantum dot-mediated reverse assaying strategy and magnetic separation. Biosens Bioelectron. 2016;86:996–1002.

    Article  CAS  Google Scholar 

  16. Sapsford KE, Rasooly A, Taitt CR, Ligler FS. Detection of Campylobacter and Shigella species in food samples using an array biosensor. Anal Chem. 2004;76:433–40.

    Article  CAS  Google Scholar 

  17. Guo PL, Tang M, Hong SL, Yu X, Pang DW, Zhang ZL. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosens Bioelectron. 2015;74:628–36.

    Article  CAS  Google Scholar 

  18. Ma Q, Nakane Y, Mori Y, Hasegawa M, et al. Multilayered, core/shell nanoprobes based on magnetic ferric oxide particles and quantum dots for multimodality imaging of breast cancer tumors. Biomaterials. 2012;33(33):8486–94.

    Article  CAS  Google Scholar 

  19. Wen JL, Zhou SG, Yu Z, Chen JH, Yang GQ, Tang J. Decomposable quantum-dots/DNA nanosphere for rapid and ultrasensitive detection of extracellular respiring bacteria. Biosens Bioelectron. 2018;100:469–74.

    Article  CAS  Google Scholar 

  20. Dogan Ü, Kasap E, Cetin D, Suludere Z, Boyaci IH, Türkyılmaz C, et al. Rapid detection of bacteria based on homogenous immunoassay using chitosan modified quantum dots. Sensors Actuators B Chem. 2016;233:369–78.

    Article  CAS  Google Scholar 

  21. Xue L, Zheng LY, Zhang HL, Jin X, Lin JN. An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria. Sensors Actuators B Chem. 2018;265:318–25.

    Article  CAS  Google Scholar 

  22. Yu JL, Su J, Zhang J, Wei XT, Guo AL. CdTe/CdS quantum dot-labeled fluorescent immunochromatography test strips for rapid detection of Escherichia coli O157:H7. RSC Adv. 2017;7(29):17819–23.

    Article  CAS  Google Scholar 

  23. Booth M, Brown AP, Evans SD, Critchley K. Determining the concentration of CuInS2 quantum dots from the size-dependent molar extinction coefficient. Chem Mater. 2012;24(11):2064–70.

    Article  CAS  Google Scholar 

  24. Leach AD, Macdonald JE. Optoelectronic properties of CuInS2 nanocrystals and their origin. J Phys Chem Lett. 2016;7(3):572–83.

    Article  CAS  Google Scholar 

  25. Park J, Dvoracek C, Lee KH, Galloway JF, Bhang HE, Pomper MG, et al. CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. Small. 2011;7(22):3148–52.

    Article  CAS  Google Scholar 

  26. Nose K, Omata T. Colloidal synthesis of ternary copper indium diselenide quantum dots and their optical properties. J Phys Chem C. 2009;113:3455–60.

    Article  CAS  Google Scholar 

  27. Allen PM, Bawendi MG. Ternary I-III-VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc. 2008;130:9240–1.

    Article  CAS  Google Scholar 

  28. Zhang R, Deng T, Wang J, Wu G, Li SR, Gu YQ, et al. Organic-to-aqueous phase transfer of Zn–Cu–In–Se/ZnS quantum dots with multifunctional multidentate polymer ligands for biomedical optical imaging. New J Chem. 2017;41(13):5387–94.

    Article  CAS  Google Scholar 

  29. Pons T, Bouccara S, Loriette V, Lequeux N, Pezet S, Fragola A. In vivo imaging of single tumor cells in fast-flowing bloodstream using near-infrared quantum dots and time-gated imaging. ACS Nano. 2019;13(3):3125–31.

    Article  CAS  Google Scholar 

  30. Li WL, Geng HC, Yao L, Cao KS, Sheng PT, Cai QY. Photoelectrocatalytic hydrogen generation enabled by CdS passivated ZnCuInSe quantum dot-sensitized TiO2 decorated with Ag nanoparticles. Nanomaterials. 2019;9(3):393.

    Article  Google Scholar 

  31. Yao L, Geng HC, Cheng RR, Cao KS, Sheng PT, Li WL, et al. Preparation of hybrid photoelectrode based on defect-poor Zn-CuInSe2 QDs sensitized nanoporous ZnO nanosheets with an application in azo dye removal. J Mater Sci Mater Electron. 2019;30(8):7928–39.

    Article  CAS  Google Scholar 

  32. Liu K, Yan X, Xu YJ, Dong L, Hao LN, Song YH, et al. Sequential growth of CaF2:Yb,Er@CaF2:Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis. Biomater Sci. 2017;5(12):2403–15.

    Article  CAS  Google Scholar 

  33. Zhang WJ, Lou Q, Ji WY, Zhao JL, Zhong XH. Color-tunable highly bright photoluminescence of cadmium-free Cu-doped Zn-In-S nanocrystals and electroluminescence. Chem Mater. 2014;26(2):1204–12.

    Article  CAS  Google Scholar 

  34. Zhang BT, Wang YC, Yang CB, Hu SY, Gao Y, Zhang YP, et al. The composition effect on the optical properties of aqueous synthesized Cu–In–S and Zn–Cu–In–S quantum dot nanocrystals. Phys Chem Chem Phys. 2015;17(38):25133–41.

    Article  CAS  Google Scholar 

  35. Xu YQ, Chen T, Hu XB, Jiang W, Wang LJ, Jiang WH, et al. The off-stoichiometry effect on the optical properties of water-soluble copper indium zinc sulfide quantum dots. J Colloid Interface Sci. 2017;496:479–86.

    Article  CAS  Google Scholar 

  36. Chen XF, Guo ZZ, Miao P. One-pot synthesis of GSH-capped CdTe quantum dots with excellent biocompatibility for direct cell imaging. Heliyon. 2018;4(3):e00576. https://doi.org/10.1016/j.heliyon.2018.e00576.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Du J, Du ZL, Hu JS, Pan ZX, Shen Q, Sun JK, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc. 2016;138(12):4201–9.

    Article  CAS  Google Scholar 

  38. He XX, Li YH, He DG, Wang KM, Shangguan JF, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol. 2014;10(7):1359–68.

    Article  CAS  Google Scholar 

  39. Shangguan JF, Li YH, He DG, He XX, Wang KM, Zou Z, et al. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst. 2015;140:4489–97.

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 21874038, 21605090) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Li or Qingyun Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Qiao, Y., Jiang, N. et al. Water-soluble ZnCuInSe quantum dots for bacterial classification, detection, and imaging. Anal Bioanal Chem 412, 8379–8389 (2020). https://doi.org/10.1007/s00216-020-02974-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02974-1

Keywords

Navigation