Skip to main content

Advertisement

Log in

Lysin cell-binding domain-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of fluorescence of Amplex Red/hydrogen peroxide assay by intracellular catalase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Accurate and rapid identification of Staphylococcus aureus (S. aureus) is of great significance for controlling the food poisoning and infectious diseases caused by S. aureus. In this study, a novel strategy that combines lysin cell-binding domain (CBD)-based magnetic separation with fluorescence detection was developed for the specific and sensitive quantification of S. aureus in authentic samples. The S. aureus cells were separated from the sample matrix by lysin CBD-functionalized magnetic beads. Following lysis by lysostaphin, intracellular catalase was released from S. aureus cells and detected by a fluorometric system composed of horseradish peroxidase (HRP), hydrogen peroxide (H2O2), and Amplex Red. S. aureus was quantified via the inhibitory effect of the released intracellular catalase on the fluorometric system since the catalase could decompose the H2O2. Optimized conditions afforded a calibration curve for S. aureus ranging from 1.0 × 102 to 1.0 × 107 CFU mL−1. The detection limit was as low as 78 CFU mL−1 in phosphate-buffered saline (PBS), and the total detection process could be completed in less than 50 min. Other bacteria associated with common food-borne and nosocomial infections negligibly interfered with S. aureus detection, except for Staphylococcus epidermidis, which may have slightly interfered. Moreover, the potential of this proposed method for practical applications has been demonstrated by detection assays of sterilized milk and human serum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu J, Zhang Y, Zhang Y, Li H, Yang H, Wei H. Sensitive and rapid detection of Staphylococcus aureus in milk via cell binding domain of lysin. Biosens Bioelectron. 2016;77:366–71.

    Article  CAS  Google Scholar 

  2. Meng X, Yang G, Li F, Liang T, Lai W, Xu H. Sensitive detection of Staphylococcus aureus with vancomycin-conjugated magnetic beads as enrichment carriers combined with flow cytometry. ACS Appl Mater Interfaces. 2017;9(25):21464–72.

    Article  CAS  Google Scholar 

  3. Zanardi G, Caminiti A, Delle Donne G, Moroni P, Santi A, Galletti G, et al. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples. J Dairy Sci. 2014;97(9):5592–8.

    Article  CAS  Google Scholar 

  4. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep. 2013;3:1863.

    Article  Google Scholar 

  5. Cheng D, Yu MQ, Fu F, Han WY, Li G, Xie JP, et al. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal Chem. 2016;88(1):820–5.

    Article  CAS  Google Scholar 

  6. Houhoula D, Papaparaskevas J, Zatsou K, Nikolaras N, Malkawi HI, Mingenot-Leclercq MP, et al. Magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis. New Microbiol. 2017;40(3):165–9.

    CAS  PubMed  Google Scholar 

  7. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192–208.

    Article  CAS  Google Scholar 

  8. Lagos J, Alarcon P, Benadof D, Ulloa S, Fasce R, Tognarelli J, et al. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain. Braz J Microbiol. 2016;47(1):177–80.

    Article  CAS  Google Scholar 

  9. Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron. 2013;43:432–9.

    Article  CAS  Google Scholar 

  10. Qiao J, Meng X, Sun Y, Li Q, Zhao R, Zhang Y, et al. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J Microbiol Methods. 2018;153:92–8.

    Article  CAS  Google Scholar 

  11. Wang X, Du Y, Li Y, Li D, Sun R. Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates. J Biomater Sci Polym Ed. 2011;22(14):1881–93.

    Article  CAS  Google Scholar 

  12. Kong W, Xiong J, Yue H, Fu Z. Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy. Anal Chem. 2015;87(19):9864–8.

    Article  CAS  Google Scholar 

  13. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, et al. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta. 2012;723:1–6.

    Article  CAS  Google Scholar 

  14. Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron. 2015;68:149–55.

    Article  CAS  Google Scholar 

  15. He X, Li Y, He D, Wang K, Shangguan J, Shi H. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol. 2014;10(7):1359–68.

    Article  CAS  Google Scholar 

  16. Yu M, Wang H, Fu F, Li L, Li J, Li G, et al. Dual-recognition Forster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem. 2017;89(7):4085–90.

    Article  CAS  Google Scholar 

  17. Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano. 2008;2(9):1777–88.

    Article  CAS  Google Scholar 

  18. Wu Y, Wang M, Ouyang H, He Y, Zhao X, Fu Z. Teicoplanin-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of the luminol chemiluminescence by intracellular catalase. Mikrochim Acta. 2018;185(8):391.

    Article  Google Scholar 

  19. Zhong D, Zhuo Y, Feng Y, Yang X. Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus. Biosens Bioelectron. 2015;74:546–53.

    Article  CAS  Google Scholar 

  20. Yan C, Zhang Y, Yang H, Yu J, Wei H. Combining phagomagnetic separation with immunoassay for specific, fast and sensitive detection of Staphylococcus aureus. Talanta. 2017;170:291–7.

    Article  CAS  Google Scholar 

  21. Pierce CL, Rees JC, Fernandez FM, Barr JR. Detection of Staphylococcus aureus using 15N-labeled bacteriophage amplification coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Chem. 2011;83(6):2286–93.

    Article  CAS  Google Scholar 

  22. Toh SY, Citartan M, Gopinath SCB, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron. 2015;64:392–403.

    Article  CAS  Google Scholar 

  23. Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: promising healthcare devices. Saudi Pharm J. 2019;27(3):312–9.

    Article  Google Scholar 

  24. Singh A, Arutyunov D, Szymanski CM, Evoy S. Bacteriophage based probes for pathogen detection. Analyst. 2012;137(15):3405–21.

    Article  CAS  Google Scholar 

  25. Yang H, Wang DB, Dong Q, Zhang Z, Cui Z, Deng J, et al. Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells. Antimicrob Agents Chemother. 2012;56(10):5031–9.

    Article  CAS  Google Scholar 

  26. Loessner MJ, Kramer K, Ebel F, Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol. 2002;44(2):335–49.

    Article  CAS  Google Scholar 

  27. Bai J, Kim YT, Ryu S, Lee JH. Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Front Microbiol. 2016;7:474.

    PubMed  PubMed Central  Google Scholar 

  28. Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I. Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysin-derived cell-wall-binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction-based quantification. Foodborne Pathog Dis. 2010;7(9):1019–24.

    Article  CAS  Google Scholar 

  29. Kong M, Sim J, Kang T, Nguyen HH, Park HK, Chung BH, et al. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Eur Biophys J. 2015;44(6):437–46.

    Article  CAS  Google Scholar 

  30. Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst. 2012;137(24):5749–56.

    Article  CAS  Google Scholar 

  31. Yoong P, Schuch R, Nelson D, Fischetti VA. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol. 2004;186(14):4808–12.

    Article  CAS  Google Scholar 

  32. Qiao J, Li Y, Wei C, Yang H, Yu J, Wei H. Rapid detection of viral antibodies based on multifunctional Staphylococcus aureus nanobioprobes. Enzym Microb Technol. 2016;95:94–9.

    Article  CAS  Google Scholar 

  33. Chandra Ojha S, Imtong C, Meetum K, Sakdee S, Katzenmeier G, Angsuthanasombat C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: adverse influence of Zn(2+) on bacteriolytic activity. Protein Expr Purif. 2018;151:106–12.

    Article  CAS  Google Scholar 

  34. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem. 1997;253(2):162–8.

    Article  CAS  Google Scholar 

  35. Wang N, Miller CJ, Wang P, Waite TD. Quantitative determination of trace hydrogen peroxide in the presence of sulfide using the Amplex Red/horseradish peroxidase assay. Anal Chim Acta. 2017;963:61–7.

    Article  CAS  Google Scholar 

  36. Dong Q, Wang J, Yang H, Wei C, Yu J, Zhang Y, et al. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci. Microb Biotechnol. 2015;8(2):210–20.

    Article  CAS  Google Scholar 

  37. Boksha IS, Lavrova NV, Grishin AV, Demidenko AV, Lyashchuk AM, Galushkina ZM, et al. Staphylococcus simulans recombinant lysostaphin: production, purification, and determination of antistaphylococcal activity. Biochemistry (Mosc). 2016;81(5):502–10.

    Article  CAS  Google Scholar 

  38. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother. 2003;47(11):3407–14.

    Article  CAS  Google Scholar 

  39. Over U, Tuc Y, Soyletir G. Catalase-negative Staphylococcus aureus: a rare isolate of human infection. Clin Microbiol Infect. 2000;6(12):681–2.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2017LH057 and ZR2018ZC1054), and the National Natural Science Foundation of China (Grant Nos. 81770915 and 81802054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronglan Zhao or Jinjuan Qiao.

Ethics declarations

Informed consent for the human serum used in this study was obtained from the individual participants according to the World Medical Association Declaration of Helsinki. The studies have been approved by the ethics committee of Weifang Medical University and have been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Wang, S., Meng, X. et al. Lysin cell-binding domain-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of fluorescence of Amplex Red/hydrogen peroxide assay by intracellular catalase. Anal Bioanal Chem 411, 7177–7185 (2019). https://doi.org/10.1007/s00216-019-02099-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02099-0

Keywords

Navigation