Skip to main content
Log in

Nrf2 knockout attenuates the astragaloside IV therapeutic effect on kidney fibrosis from liver cancer by regulating pSmad3C/3L pathways

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Fibrotic kidney injury from hepatocarcinogenesis seriously impacts treatment effect. Astragaloside IV (AS-IV), an extract of Astragalus membranaceus, has several pharmacological activities, which are useful in the treatment of edema and fibrosis. Nrf2/HO-1 is a key antioxidant stress pathway and help treatment of kidney injury. Smad3 phosphorylation is implicated in hepatocarcinogenesis. Our previous study clarified that Smad3 is differentially regulated by different phosphorylated forms of Smad3 on hepatocarcinogenesis. Therefore, we investigated the contribution of AS-IV on the therapy of kidney fibrosis from hepatocarcinogenesis. And the focus was on whether the phosphorylation of Smad3 and the regulation of Nrf2/HO-1 pathway were involved during AS-IV therapy and whether there is an effect of Nrf2 knockout on the phosphorylation of Smad3. We performed TGF-β1 stimulation on HK-2 cells and intervened with AS-IV. Furtherly, we investigated renal injury of AS-IV on Nrf2 knockout mice during hepatocarcinogenesis and its mechanism of action. On the one hand, in vitro results showed that AS-IV reduced the ROS and α-SMA expression of HK-2 by promoting the expression pSmad3C/p21 of and Nrf2/HO-1 and suppressed the expression of pSmad3L/PAI-1. On the other hand, the in vivo results of histopathological features, serological biomarkers, and oxidative damage indicators showed that Nrf2 knockout aggravated renal injury. Besides, Nrf2 deletion decreased the nephroprotective effect of AS-IV by suppressing the pSmad3C/p21 pathway and promoting the pSmad3L/PAI-1 pathway. The experimental results were as we suspected. And we identify for the first time that Nrf2 deficiency increases renal fibrosis from hepatocarcinogenesis and attenuates the therapeutic effects of AS-IV via regulating pSmad3C/3L signal pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author upon reason able request.

Abbreviations

AS-IV:

Astragaloside IV

BUN:

Blood urea nitrogen

CCl4 :

Carbon tetrachloride

DEN:

Diethylinitrosamine

DMSO:

Dimethyl sulfoxide

HCC:

Hepatocellular carcinoma

HE:

Hematoxylin and eosin

HRS:

Hepatorenal syndrome

HO-1:

Heme oxygenase-1

Masson:

Masson-trichrome staining

MDA:

Malondialdehyde

Nrf2:

Nuclear factor erythroid 2-related factor 2

NS:

Normal saline

PAI-1:

Plasminogen activator inhibitor-1

pSmad3C:

C-terminally phosphorylated Smad3

pSmad3L:

Linker-phosphorylated Smad3

Scr:

Serum creatinine

SOD:

Superoxide dismutase

TGF-β1:

Transforming growth factor-beta 1

TβRI:

TGF-β type I receptor

α-SMA:

Alpha smooth muscle actin

β-actin:

Beta-actin (β-non-muscle)

References

  • Aladaileh SH, Hussein OE, Abukhalil MH, Saghir SAM, Bin-Jumah M, Alfwuaires MA, Germoush MO, Almaiman AA, Mahmoud AM (2019) Formononetin upregulates Nrf2/HO-1 signaling and prevents oxidative stress, inflammation, and kidney injury in methotrexate-induced rats. Antioxidants (Basel) 8(10):430

    CAS  PubMed  Google Scholar 

  • Boutron I, Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol 18(7):e3000411

    Google Scholar 

  • Chen Q, Su Y, Ju Y, Ma K, Li W, Li W (2018) Astragalosides IV protected the renal tubular epithelial cells from free fatty acids-induced injury by reducing oxidative stress and apoptosis. Biomed Pharmacother 108:679–686

    CAS  PubMed  Google Scholar 

  • Chen X, Wei W, Li Y, Huang J, Ci X (2019) Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem Biol Interact 308:269–278

    CAS  PubMed  Google Scholar 

  • Chu H, Huang C, Gao Z, Dong J, Tang Y, Dong Q (2017) Reduction of ischemic brain edema by combined use of paeoniflorin and astragaloside IV via down-regulating connexin 43. Phytother Res 31(9):1410–1418

    CAS  PubMed  Google Scholar 

  • Csak T, Bernstein D (2022) Hepatorenal syndrome: pathophysiology. Clin Liver Dis 26(2):165–179

    PubMed  Google Scholar 

  • Cui X, Jiang X, Wei C, Xing Y, Tong G (2020) Astragaloside IV suppresses development of hepatocellular carcinoma by regulating miR-150-5p/beta-catenin axis. Environ Toxicol Pharmacol 78:103397

    CAS  PubMed  Google Scholar 

  • Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, Tan HL, Tang XL, Wang YG, Ma ZC, Gao Y (2020) Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol 11:624529

    CAS  PubMed  Google Scholar 

  • Ding T, Zhao T, Li Y, Liu Z, Ding J, Ji B, Wang Y, Guo Z (2021) Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. Phytomedicine 86:153562

    CAS  PubMed  Google Scholar 

  • Fan Y, Cheng J, Yang Q, Feng J, Hu J, Ren Z, Yang H, Yang D, Ding G (2021) Sirt6-mediated Nrf2/HO-1 activation alleviates angiotensin II-induced DNA DSBs and apoptosis in podocytes. Food Funct 12(17):7867–7882

    CAS  PubMed  Google Scholar 

  • Francoz C, Durand F, Kahn JA, Genyk YS, Nadim MK (2019) Hepatorenal syndrome. Clin J Am Soc Nephrol 14(5):774–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y, Liu X (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol 289:115021

    CAS  PubMed  Google Scholar 

  • Gao P, Du X, Liu L, Xu H, Liu M, Guan X, Zhang C (2020) Astragaloside IV alleviates tacrolimus-induced chronic nephrotoxicity via p62-Keap1-Nrf2 pathway. Front Pharmacol 11:610102

    CAS  PubMed  Google Scholar 

  • Gong Y, Li D, Li L, Yang J, Ding H, Zhang C, Wen G, Wu C, Fang Z, Hou S, Yang Y (2021) Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis. Food Chem Toxicol 147:111912

    CAS  PubMed  Google Scholar 

  • Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, Miyajima M, Nozu K, Nagao S, Takahashi H, Sako M, Iijima K, Yoshikawa N, Suzuki H (2017) Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 313(6):F1223–F1231

    PubMed  Google Scholar 

  • Jiang N, Zhao H, Han Y, Li L, Xiong S, Zeng L, Xiao Y, Wei L, Xiong X, Gao P, Yang M, Liu Y, Sun L (2020) HIF-1alpha ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics. Cell Prolif 53(11):e12909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanlaya R, Peerapen P, Nilnumkhum A, Plumworasawat S, Sueksakit K, Thongboonkerd V (2020) Epigallocatechin-3-gallate prevents TGF-beta1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3beta/beta-catenin/Snail1 and Nrf2 pathways. J Nutr Biochem 76:108266

    CAS  PubMed  Google Scholar 

  • Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M (2021) The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 21(9):541–557

    CAS  PubMed  Google Scholar 

  • Lu MC, Zhao J, Liu YT, Liu T, Tao MM, You QD, Jiang ZY (2019) CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-kappaB activation. Redox Biol 26:101266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Sun X, Jia M, Sun F, Zhu J, Chen X, Chen K, Jiang K (2021) Rosiglitazone suppresses renal crystal deposition by ameliorating tubular injury resulted from oxidative stress and inflammatory response via promoting the Nrf2/HO-1 pathway and shifting macrophage polarization. Oxid Med Cell Longev 2021:5527137

    PubMed  PubMed Central  Google Scholar 

  • Luo M, Yang F, Huang S-X, Kuang Z-P, Luo X-L, Li Y-D, Wu J-N, Xie Y-A (2012) Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol Res Featuring Preclinical Clin Cancer Ther 20(11):517–528

    Google Scholar 

  • Lv Y, Yang Z, Liu L, Li K, He C, Wang Z, Bai W, Guo W, Yu T, Yuan X, Zhang H, Xie H, Yao L, Wang J, Li T, Wang Q, Chen H, Wang E, Xia D, Luo B, Li X, Yuan J, Han N, Zhu Y, Niu J, Cai H, Xia J, Yin Z, Wu K, Fan D, Han G (2019) Early TIPS with covered stents versus standard treatment for acute variceal bleeding in patients with advanced cirrhosis: a randomised controlled trial. Lancet Gastroenterol Hepatol 4(8):587–598

    PubMed  Google Scholar 

  • Ma JQ, Zhang YJ, Tian ZK, Liu CM (2021) Bixin attenuates carbon tetrachloride induced oxidative stress, inflammation and fibrosis in kidney by regulating the Nrf2/TLR4/MyD88 and PPAR-gamma/TGF-beta1/Smad3 pathway. Int Immunopharmacol 90:107117

    CAS  PubMed  Google Scholar 

  • Mahmoud AM, Desouky EM, Hozayen WG, Bin-Jumah M, El-Nahass ES, Soliman HA, Farghali AA (2019) Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-kappaB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules 9(10):528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki K (2013) Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev 24(4):385–399

    CAS  PubMed  Google Scholar 

  • Metwaly HA, El-Eraky AM, Ibrahim EE, Kandil KK, El-Sayed MA, El-Tabakh NM, Motawea AM, Ali HA, Jabban MZ, Mahmoud ME, Abdelfattah WH, Elmorsy MA, Ghanim AMH (2022) Vanillin attenuates thioacetamide-induced renal assault by direct and indirect mediation of the TGFβ, ERK and Smad signalling pathways in rats. Cell Biochem Funct 40(2):189–202

    Google Scholar 

  • Murata M, Matsuzaki K, Yoshida K, Sekimoto G, Tahashi Y, Mori S, Uemura Y, Sakaida N, Fujisawa J, Seki T, Kobayashi K, Yokote K, Koike K, Okazaki K (2009) Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-β signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology 49(4):1203–1217

    CAS  PubMed  Google Scholar 

  • Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, Vilstrup H, Jalan R (2020) Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol 73(6):1526–1547

    PubMed  Google Scholar 

  • Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F (2017) Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother 87:223–229

    CAS  PubMed  Google Scholar 

  • Shen X, Wang H, Weng C, Jiang H, Chen J (2021) Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity. Cell Death Dis 12(2):186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shopit A, Niu M, Wang H, Tang Z, Li X, Tesfaldet T, Ai J, Ahmad N, Al-Azab M, Tang Z (2020) Protection of diabetes-induced kidney injury by phosphocreatine via the regulation of ERK/Nrf2/HO-1 signaling pathway. Life Sci 242:117248

    CAS  PubMed  Google Scholar 

  • Tan HK, Teng MLP, Soh AYS, Cheo SHY, Fook-Chong S, Goh GBB, Tan CK, Wong GW, Lee GH, Chang JPE (2021) Poor outcomes of cirrhosis due to nonalcoholic steatohepatitis compared with hepatitis B after decompensation with ascites. Am J Gastroenterol 116(7):1437–1446

    PubMed  Google Scholar 

  • Tang PM, Zhang YY, Xiao J, Tang PC, Chung JY, Li J, Xue VW, Huang XR, Chong CC, Ng CF, Lee TL, To KF, Nikolic-Paterson DJ, Lan HY (2020) Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci U S A 117(34):20741–20752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MJ, Kim EH, Hannan MA, Ha H (2021) Pharmacotherapy against oxidative stress in chronic kidney disease: promising small molecule natural products targeting Nrf2-HO-1 signaling. Antioxidants (Basel) 10(2):258

    CAS  PubMed  Google Scholar 

  • Wang S-S, Tsai Y-T, Lee S-D, Chen H-T, Lu C-W, Lee F-Y, Jeng J-S, Liu Y-C, Lo K-J (1991) Spontaneous bacterial peritonitis in patients with hepatitis B-related cirrhosis and hepatocellular carcinoma. Gastroenterology 101(6):1656–1662

    CAS  PubMed  Google Scholar 

  • Wen Y, Liu Y, Huang Q, Liu R, Liu J, Zhang F, Liu S, Jiang Y (2022) Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3beta activity and activating the Nrf2/HO-1 pathway. Phytomedicine 95:153856

    CAS  PubMed  Google Scholar 

  • Wu X, Guan Y, Yan J, Liu M, Yin Y, Duan J, Wei G, Hu T, Weng Y, Xi M, Wen A (2015) ShenKang injection suppresses kidney fibrosis and oxidative stress via transforming growth factor-beta/Smad3 signalling pathway in vivo and in vitro. J Pharm Pharmacol 67(8):1054–1065

    CAS  PubMed  Google Scholar 

  • Wu C, Chen W, Fang M, Boye A, Tao X, Xu Y, Hou S, Yang Y (2019) Compound Astragalus and Salvia miltiorrhiza extract inhibits hepatocellular carcinoma progression via miR-145/miR-21 mediated Smad3 phosphorylation. J Ethnopharmacol 231:98–112

    CAS  PubMed  Google Scholar 

  • Wu F, Zhao Y, Shao Q, Fang K, Dong R, Jiang S, Lu F, Luo J, Chen G (2021a) Ameliorative effects of osthole on experimental renal fibrosis in vivo and in vitro by inhibiting IL-11/ERK1/2 signaling. Front Pharmacol 12:646331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Xiao W, Pei C, Wang M, Wang X, Huang D, Wang F, Wang Z (2021) Astragaloside IV alleviates PM2.5-induced lung injury in rats by modulating TLR4/MyD88/NF-κB signalling pathway. Int Immunopharmacol 91:107290

    CAS  PubMed  Google Scholar 

  • Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, Wang J, Qin Y, Liu Y, Tang C, He L, Greka A, Zhou Z, Liu F, Dong Z, Sun L (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol 11:297–311

    CAS  PubMed  Google Scholar 

  • Yan W, Xu Y, Yuan Y, Tian L, Wang Q, Xie Y, Shao X, Zhang M, Ni Z, Mou S (2017) Renoprotective mechanisms of Astragaloside IV in cisplatin-induced acute kidney injury. Free Radic Res 51(7–8):669–683

    CAS  PubMed  Google Scholar 

  • Younis NN, Elsherbiny NM, Shaheen MA, Elseweidy MM (2020) Modulation of NADPH oxidase and Nrf2/HO-1 pathway by vanillin in cisplatin-induced nephrotoxicity in rats. J Pharm Pharmacol 72(11):1546–1555

    CAS  PubMed  Google Scholar 

  • Yu WC, Huang RY, Chou TC (2020) Oligo-fucoidan improves diabetes-induced renal fibrosis via activation of Sirt-1, GLP-1R, and Nrf2/HO-1: an in vitro and in vivo study. Nutrients 12(10):3068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Xiao Q, Yu X, Cheng Y, Lin H, Xiang Z (2022) A network pharmacology-based study on the mechanism of astragaloside IV alleviating renal fibrosis through the AKT1/GSK-3β pathway. J Ethnopharmacol 297:115535

    CAS  PubMed  Google Scholar 

  • Zhang C, Li L, Hou S, Shi Z, Xu W, Wang Q, He Y, Gong Y, Fang Z, Yang Y (2021) Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways. J Ethnopharmacol 279:114350

    CAS  PubMed  Google Scholar 

  • Zhou X, Sun X, Gong X, Yang Y, Chen C, Shan G, Yao Q (2017) Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int Immunopharmacol 42:18–24

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Research Center of Anhui Medical University for their effective techniques and valuable help during the experiments. We thank Dr. K. Matsuzaki for presenting us with rabbit polyclonal anti-pSmad3L (Ser208/213) antibody. We thank Professor Xiaoming Meng for the gift of HK-2 cells.

Funding

This study was supported by the National Natural Science Foundation of China (81874354, 82074073).

Author information

Authors and Affiliations

Authors

Contributions

QW and XJC conceived and designed the research. QW conducted experiments and wrote the manuscript. MM L and YQ C contributed to new reagents and analytical tools. YY X, LL L and YF G provided the methodology and analyzed data. YY were responsible for the supervision and funding acquisition. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Yan Yang.

Ethics declarations

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Animal Ethics Committee of Anhui Medical University (Ethics approval code: LLSC, 20221064, Approval Date: 2 June 2022).

Consent to participate

Not applicable.

Consent for publication

All authors approved the manuscript to be published.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Xu, J., Li, M. et al. Nrf2 knockout attenuates the astragaloside IV therapeutic effect on kidney fibrosis from liver cancer by regulating pSmad3C/3L pathways. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1687–1700 (2024). https://doi.org/10.1007/s00210-023-02711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02711-2

Keywords

Navigation