Skip to main content
Log in

Weight polytopes and saturation of Demazure characters

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For G a reductive group and \(T\subset B\) a maximal torus and Borel subgroup, Demazure modules are certain B-submodules, indexed by elements of the Weyl group, of the finite irreducible representations of G. In order to describe the T-weight spaces that appear in a Demazure module, we study the convex hull of these weights—the Demazure polytope. We characterize these polytopes both by vertices and by inequalities, and we use these results to prove that Demazure characters are saturated, in the case that G is simple of classical Lie type. Specializing to \(G=GL_n\), we recover results of Fink, Mészáros, and St. Dizier, and separately Fan and Guo, on key polynomials, originally conjectured by Monical, Tokcan, and Yong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson, H.H.: Schubert varieties and Demazure’s character formula. Invent. Math. 79, 611–618 (1985)

    Article  MathSciNet  Google Scholar 

  2. Anderson, J.E.: A polytope calculus for semisimple groups. Duke Math. J. 116(3), 567–588 (2003)

  3. Belkale, P., Kumar, S.: Eigenvalue problem and a new product in cohomology of flag varieties. Invent. Math. 166, 185–228 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bernstein, J., Gel’fand, I.M., Gel’fand, S.I.: Schubert cells and cohomology of the spaces \(G/P\). Usp. Mat. Nauk 28, 1–26 (1973)

    MathSciNet  Google Scholar 

  5. Besson, M., Hong, J.: A combinatorial study of affine Schubert varieties in the affine Grassmannian. Transform. Groups (2021) (To appear)

  6. Bourbaki, “Lie Groups and Lie Algebras: Chapters 4-6,” Elements of Mathematics. Springer (2002)

  7. Brion, M., Procesi, C.: Action d’un tore dans une variété projective. In: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progress in Mathematics, vol. 92, pp. 509–539. Birkhäuser, Boston (1990)

  8. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for rational cones and affine monoids (2017). http://normaliz.uos.de

  9. Demazure, M.: Désingularisation des variétés de Schubert généralisées. Ann. Sci. de l’École Normale Supérieure, Série 4, Tome 7(1), 53–88 (1974). https://doi.org/10.24033/asens.1261

  10. Demazure, M.: Une nouvelle formule de caractéres. Bull. Sci. Math. 2e Série 98(3), 163–172 (1974)

    MathSciNet  Google Scholar 

  11. Dykes, K.: MV polytopes and reduced double Bruhat cells. Preprint (2023). arXiv:2301.10627

  12. Fan, N.J.Y., Guo, P.L.: Vertices of schubitopes. J. Comb. Theory Ser. A 177, 105311 (2021)

    Article  MathSciNet  Google Scholar 

  13. Fink, A., Mészáros, K., St. Dizier, A.: Schubert polynomials as integer point transforms of generalized polyhedra. Adv. Math. 332, 465–475 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gao, Y., Hodges, R., Yong, A.: Classification of Levi-spherical Schubert varieties. Preprint (2021). arXiv:2104.10101

  15. Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222. Springer, Berlin (2004)

    Google Scholar 

  16. Hesselink, W.H.: Desingularizations of varieties of nullforms. Invent. Math. 55(2), 141–163 (1979)

    Article  MathSciNet  Google Scholar 

  17. Hodges, R., Yong, A.: Coxeter combinatorics and spherical Schubert geometry. J. Lie Theory (2021) (To appear)

  18. Ion, B.: A weight multiplicity formula for Demazure modules. Int. Math. Res. Not. 5, 311–323 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kamnitzer, J.: Mirkovi c-Vilonen cycles and polytopes. Ann. Math. 171(1), 245–294 (2010)

    Article  MathSciNet  Google Scholar 

  20. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993)

    Article  MathSciNet  Google Scholar 

  21. Kempf, G.: Instability in invariant theory. Ann. Math. 108, 2607–2617 (1978)

    Article  MathSciNet  Google Scholar 

  22. Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators. Sel. Math. (N.S.) 4, 419–445 (1998)

    Article  MathSciNet  Google Scholar 

  23. Kumar, S.: A survey of the additive eigenvalue problem. Transform. Groups 19, 1051–1148 (2014)

    Article  MathSciNet  Google Scholar 

  24. Kumar, S.: Kac-Moody Groups, their Flag Varieties, and Representation Theory, Progress in Mathematics. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  25. Littelmann, P.: Crystal graphs and Young tableaux. J. Algebra 175, 65–87 (1995)

    Article  MathSciNet  Google Scholar 

  26. Littelmann, P.: Paths and root operators in representation theory. Ann. Math. 142, 499–525 (1995)

    Article  MathSciNet  Google Scholar 

  27. van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE, A package for Lie Group Computations. http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/

  28. Mason, S.: An explicit construction of type A Demazure atoms. J. Algebraic Comb. 29, 295–313 (2009)

    Article  MathSciNet  Google Scholar 

  29. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166, 95–143 (2007)

    Article  MathSciNet  Google Scholar 

  30. Monical, C., Tokcan, N., Yong, A.: Newton polytopes in algebraic combinatorics. Sel. Math. New Ser. (2019). https://doi.org/10.1007/s00029-019-0513-8

    Article  MathSciNet  Google Scholar 

  31. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Springer, Berlin (1994)

    Book  Google Scholar 

  32. Naito, S., Sagaki, D.: Mirković-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal. Adv. Math. 221(6), 1804–1842 (2009)

    Article  MathSciNet  Google Scholar 

  33. Ressayre, N.: Geometric invariant theory and the generalized eigenvalue problem. Invent. Math. 180(2), 389–441 (2010)

    Article  MathSciNet  Google Scholar 

  34. Schrijver, A.: Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics, a Wiley-Interscience Publication. Wiley, Chichester (1986)

    Google Scholar 

  35. Schwer, C.: Galleries and q-analogs in Combinatorial Representation Theory. Köln (2006)

  36. Springer, T.A.: Linear Algebraic Groups, 2nd edn. Birkhäuser, Boston (1998)

    Book  Google Scholar 

  37. Tsukerman, E., Williams, L.: Bruhat interval polytopes. Adv. Math. 285, 766–810 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to D. Anderson and A. Yong for their feedback on an earlier version of the manuscript. The authors also wish to thank J. Kamnitzer for questions and comments on the first draft. The first author wishes to thank J. Hong for discussions on this problem during the course of their studies of affine Schubert varieties [5]. Finally, we thank the anonymous referee for many helpful suggestions, comments, and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Besson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. Our manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besson, M., Jeralds, S. & Kiers, J. Weight polytopes and saturation of Demazure characters. Math. Ann. 388, 4449–4486 (2024). https://doi.org/10.1007/s00208-023-02617-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02617-7

Navigation