Skip to main content
Log in

Darondeau–Pragacz formulas in complex cobordism

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we generalize the push-forward (Gysin) formulas for flag bundles in ordinary cohomology theory, which are due to Darondeau–Pragacz, to the complex cobordism theory. Then, we introduce the universal quadratic Schur functions, which are a generalization of the (ordinary) quadratic Schur functions introduced by Darondeau–Pragacz, and establish some Gysin formulas for the universal quadratic Schur functions as an application of our Gysin formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. D–P formulas for short.

  2. For further applications of Gysin formulas in complex cobordism and techniques of generating functions, readers are referred to a companion paper [20].

  3. We adopted the terminology used in Darondeau–Pragacz [8, §1.2].

  4. An analogous determinantal formula for the Grothendieck polynomials was recently obtained by Hudson–Ikeda–Matsumura–Naruse [13, Theorem 3.13].

References

  1. Adams, J.F.: Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1974)

    Google Scholar 

  2. Bressler, P., Evens, S.: The Schubert calculus, braid relations, and generalized cohomology. Trans. Am. Math. Soc. 317(2), 799–811 (1990)

    Article  MathSciNet  Google Scholar 

  3. Brion, M.: The push-forward and Todd class of flag bundles. Parameter Spaces 36, 45–50 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Buch, A.S.: A Littlewood–Richardson rule for the \(K\)-theory of Grassmannians. Acta Math. 189, 37–78 (2002)

    Article  MathSciNet  Google Scholar 

  5. Buch, A.S.: Grothendieck classes of quiver varieties. Duke Math. J. 115(1), 75–103 (2002)

    Article  MathSciNet  Google Scholar 

  6. Conner, P.E., Floyd, E.E.: The Relation of Cobordism to \(K\)-theories. Lecture Notes in Mathematics, vol. 28. Springer, Berlin (1966)

    Book  Google Scholar 

  7. Damon, J.: The Gysin homomorphism for flag bundles. Am. J. Math. 95, 643–659 (1973)

    Article  MathSciNet  Google Scholar 

  8. Darondeau, L., Pragacz, P.: Universal Gysin formulas for flag bundles. Internat. J. Math. 28(11), 1750077 (2017)

  9. Edidin, D., Graham, W.: Characteristic classes and quadric bundles. Duke Math. J. 78, 277–299 (1995)

    Article  MathSciNet  Google Scholar 

  10. Fel’dman, K.E.: An equivariant analog of the Poincaré-Hopf theorem. J. Math. Sci. 113, 906–914 (2003). (Translated from Zap. Nauchn. Sem. POMI 267(2001), 303–318)

    Article  MathSciNet  Google Scholar 

  11. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  12. Fulton, W., Pragacz, P.: Schubert Varieties and Degeneracy Loci. Lecture Notes in Mathematics, vol. 1689. Springer, Berlin (1998)

    Book  Google Scholar 

  13. Hudson, T., Ikeda, T., Matsumura, T., Naruse, H.: Degeneracy loci classes in \(K\)-theory-determinantal and Pfaffian formula. Adv. Math. 320, 115–156 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hudson, T., Matsumura, T.: Segre classes and Damon–Kempf–Laksov formula in algebraic cobordism. Math. Ann. 374, 1439–1457 (2019)

    Article  MathSciNet  Google Scholar 

  15. Lazard, M.: Sur les groupes de Lie formels à un paramètre. Bull. Soc. Math. Fr. 83, 251–274 (1955)

    Article  Google Scholar 

  16. Levine, M., Morel, F.: Algebraic Cobordism. Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  17. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  18. Nakagawa, M., Naruse, H.: Generalized (co)homology of the loop spaces of classical groups and the universal factorial Schur \(P\)- and \(Q\)-functions. Schubert Calculus-Osaka 2012, 337–417, Adv. Stud. Pure Math., 71, Math. Soc. Japan, Tokyo (2016)

  19. Nakagawa, M., Naruse, H.: Universal Gysin formulas for the universal Hall–Littlewood functions. Contemp. Math. 708, 201–244 (2018)

    Article  MathSciNet  Google Scholar 

  20. Nakagawa, M., Naruse, H.: Generating functions for the universal factorial Hall–Littlewood \(P\)- and \(Q\)-functions. arXiv:1705.04791

  21. Naruse, H.: Elementary proof and application of the generating functions for generalized Hall–Littlewood functions. J. Algebra 516, 197–209 (2018)

    Article  MathSciNet  Google Scholar 

  22. Pragacz, P., Ratajski, J.: Formulas for Lagrangian and orthogonal degeneracy loci; \(\tilde{Q}\)-polynomial approach. Compos. Math. 107, 11–87 (1997)

    Article  MathSciNet  Google Scholar 

  23. Quillen, D.: On the formal group laws of unoriented and complex cobordism theory. Bull. Am. Math. Soc. 75(6), 1293–1298 (1969)

    Article  MathSciNet  Google Scholar 

  24. Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7, 29–56 (1971)

    Article  MathSciNet  Google Scholar 

  25. Switzer, R.: Algebraic Topology–Homology and Homotopy, Classics in Mathematics (Reprint of the 1975th edn). Springer, Berlin (2002)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Piotr Pragacz and Tomoo Matsumura for valuable discussions, and Eric Marberg for pointing out an ambiguity in our treatment of the residue symbol \(\underset{t = 0}{\mathrm {Res}'}\) (see Sect. 3.1.2 and Sect. 5.1). Thanks are also due to the anonymous referee whose careful reading and useful comments greatly improved our previous manuscript. The first author is partially supported by JSPS KAKENHI Grant number JP18K03303, Japan Society for the Promotion of Science. The second author is partially supported by JSPS KAKENHI Grant number JP16H03921, Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Nakagawa.

Additional information

Communicated by Jean-Yves Welschinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Quillen’s Residue Formula

As we mentioned in Sect. 3.1.2, we proceed with the calculation of Quillen’s residue formula, i.e., the right-hand side of (3.3) in the following manner: first, we consider the case where \(f(t) = t^{N}\), a monomial in t of degree \(N \ge 0\). We expand \(\mathscr {P}^{\mathbb {L}}(t, y_{j})\) as \(\sum _{\ell _{j} = 0}^{\infty } \mathscr {P}_{\ell _{j}} (y_{j}) t^{\ell _{j}}\) for \(j = 1, \ldots , n\). Then, we compute

$$\begin{aligned} \dfrac{t^{N}}{\mathscr {P}^{\mathbb {L}} (t) \prod _{j=1}^{n} (t +_{\mathbb {L}} \overline{y}_{j})}= & {} t^{N} \times \dfrac{1}{\mathscr {P}^{\mathbb {L}}(t)} \times \dfrac{1}{ \prod _{j=1}^{n} \dfrac{t - y_{j}}{\mathscr {P}^{\mathbb {L}} (t, y_{j})} } \\= & {} t^{N - n} \times \dfrac{1}{\mathscr {P}^{\mathbb {L}} (t)} \times \displaystyle {\prod _{j=1}^{n}} \mathscr {P}^{\mathbb {L}} (t, y_{j}) \times \prod _{j=1}^{n} \dfrac{1}{1 - y_{j}t^{-1}}\\= & {} t^{N-n} \times \left( \displaystyle {\sum _{k=0}^{\infty }} [\mathbb {C}P^{k}] t^{k} \right) \times \displaystyle {\prod _{j=1}^{n}} \left( \sum _{\ell _{j} = 0}^{\infty } \mathscr {P}_{\ell _{j}} (y_{j}) t^{\ell _{j}} \right) \\&\times \left( \sum _{m=0}^{\infty } h_{m} ({\varvec{y}}_{n}) t^{-m} \right) . \end{aligned}$$

For brevity, we put

$$\begin{aligned} \prod _{j=1}^{n} \left( \sum _{\ell _{j} = 0}^{\infty } \mathscr {P}_{\ell _{j}} (y_{j}) t^{\ell _{j}} \right) = \sum _{\ell = 0}^{\infty } \left( \sum _{ \begin{array}{c} \ell _{1} + \cdots + \ell _{n} = \ell \\ \ell _{1} \ge 0, \ldots , \ell _{n} \ge 0 \end{array} } \prod _{j=1}^{n} \mathscr {P}_{\ell _{j}}(y_{j}) \right) t^{\ell } = \sum _{\ell = 0}^{\infty } \mathscr {P}_{\ell }({\varvec{y}}_{n}) t^{\ell }. \end{aligned}$$

Then, the computation continues as

$$\begin{aligned}&t^{N-n} \times \left( \displaystyle {\sum _{k=0}^{\infty }} [\mathbb {C}P^{k}] t^{k} \right) \times \left\{ \displaystyle {\sum _{r= -\infty }^{\infty }} \left( \sum _{\ell = r}^{\infty } \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{\ell - r}({\varvec{y}}_{n}) \right) t^{r}\right\} \\&\quad = t^{N - n} \times \left( \displaystyle {\sum _{k=0}^{\infty }} [\mathbb {C}P^{k}] t^{k} \right) \times \left\{ \displaystyle {\sum _{r=0}^{\infty }} \left( \sum _{\ell = r}^{\infty } \mathscr {P}_{\ell } ({\varvec{y}}_{n}) h_{\ell - r} ({\varvec{y}}_{n}) \right) t^{r} + \displaystyle {\sum _{r=1}^{\infty }} \left( \sum _{\ell = 0}^{\infty } \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{\ell + r}({\varvec{y}}_{n}) \right) t^{-r}\right\} \\&\quad = t^{N - n} \times \left[ \displaystyle {\sum _{s = 0}^{\infty }} \left\{ \sum _{k= 0}^{s} \sum _{\ell = s - k}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell } ({\varvec{y}}_{n}) h_{k + \ell - s} ({\varvec{y}}_{n})\right\} t^{s} \right. \\&\qquad \left. + \displaystyle {\sum _{s = -\infty }^{\infty }} \left\{ \sum _{k = s + 1}^{\infty } \sum _{\ell = 0}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{k +\ell - s}({\varvec{y}}_{n}) \right\} t^{s} \right] \\&\quad = t^{N - n} \times \left[ \displaystyle {\sum _{s = 0}^{\infty }} \left\{ \sum _{k= 0}^{s} \sum _{\ell = s - k}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell } ({\varvec{y}}_{n}) h_{k + \ell - s} ({\varvec{y}}_{n})\right\} t^{s} \right. \\&\qquad + \displaystyle {\sum _{s = 0}^{\infty }} \left\{ \sum _{k = s + 1}^{\infty } \sum _{\ell = 0}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{k +\ell - s} ({\varvec{y}}_{n}) \right\} t^{s}\\&\qquad \left. + \displaystyle {\sum _{s = 1}^{\infty }} \left\{ \sum _{k = 0}^{\infty } \sum _{\ell = 0}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{k +\ell + s} ({\varvec{y}}_{n}) \right\} t^{-s} \right] . \end{aligned}$$

Next, we extract the coefficient of \(t^{-1}\) in the above formal Laurent series. In the case of \(N \ge n\), one sees immediately that the coefficient of \(t^{-1}\) is

$$\begin{aligned} \sum _{k = 0}^{\infty } \sum _{\ell = 0}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{k +\ell + N - n + 1} ({\varvec{y}}_{n}). \end{aligned}$$

In the case of \(0 \le N < n\), the coefficient of \(t^{-1}\) is

$$\begin{aligned}&\displaystyle {\sum _{k= 0}^{n - N - 1}} \sum _{\ell = n - N - 1 - k}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell } ({\varvec{y}}_{n}) h_{k + \ell + N - n + 1} ({\varvec{y}}_{n})\\&+ \sum _{k = n - N }^{\infty } \sum _{\ell = 0}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{k +\ell + N - n + 1} ({\varvec{y}}_{n}) \\&\quad = \displaystyle {\sum _{k= 0}^{\infty }} \sum _{\ell = n - N - 1 - k}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell } ({\varvec{y}}_{n}) h_{k + \ell + N - n + 1} ({\varvec{y}}_{n}). \end{aligned}$$

Summing up the above calculation, we get the following result:

$$\begin{aligned} \underset{t = 0}{\mathrm {Res}'} \dfrac{t^{N}}{\mathscr {P}^{\mathbb {L}} (t) \prod _{j=1}^{n} (t +_{\mathbb {L}} \overline{y}_{j}) } = \left\{ \begin{array}{ll} &{} \displaystyle {\sum _{k = 0}^{\infty }} \sum _{\ell = 0}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell }({\varvec{y}}_{n}) h_{k +\ell + N - n + 1} ({\varvec{y}}_{n}) \quad (N \ge n), \\ &{} \displaystyle {\sum _{k= 0}^{\infty }} \sum _{\ell = n - N - 1 - k}^{\infty } [\mathbb {C}P^{k}] \mathscr {P}_{\ell } ({\varvec{y}}_{n}) h_{k + \ell + N - n + 1} ({\varvec{y}}_{n}) \quad (0 \le N < n). \end{array}\right. \end{aligned}$$
(5.1)

For a general polynomial of the form \(f(t) = \sum _{N=0}^{M} a_{N} t^{N} \in MU^{*}(X)[t]\), one has \(\varpi _{1 *} (f(y_{1})) = \varpi _{1 *} \left( \sum _{N=0}^{M} a_{N} y_{1}^{N} \right) = \sum _{N=0}^{M} a_{N} \varpi _{1 *} (y_{1}^{N})\) since the Gysin map \(\varpi _{1 *}\) is an \(MU^{*}(X)\)-homomorphism. From this, we can calculate \(\varpi _{1 *}(f(y_{1}))\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, M., Naruse, H. Darondeau–Pragacz formulas in complex cobordism. Math. Ann. 381, 335–361 (2021). https://doi.org/10.1007/s00208-021-02196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02196-5

Mathematics Subject Classification

Navigation