Skip to main content

Advertisement

Log in

The thrombopoietin mimetic JNJ-26366821 reduces the late injury and accelerates the onset of liver recovery after acetaminophen-induced liver injury in mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42–48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study. All data generated or analyzed during this study are included in this published article.

Abbreviations

AIF:

Apoptosis-inducing factor

APAP:

Acetaminophen

GSH:

Glutathione

H&E:

Hematoxylin and eosin

JNK:

C-jun N-terminal kinase

MPTP:

Mitochondrial permeability transition pore

NAC:

N-Acetylcysteine

NAPQI:

N-Acetyl-p-benzoquinone imine

TPOm:

PEGylated thrombopoietin mimetic

TUNEL assay:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay

References

  • Adelusi OB, Ramachandran A, Lemasters JJ, Jaeschke H (2022) The role of iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol Appl Pharmacol 445:116043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal S, Khazaeni B (2023) Acetaminophen toxicity. StatPearls Publishing StatPearls Publishing LLC, Treasure Island FL

    Google Scholar 

  • Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H (2021) Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch Toxicol 95:3377–3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akakpo JY, Ramachandran A, Curry SC, Rumack BH, Jaeschke H (2022) Comparing N-acetylcysteine and 4-methylpyrazole as antidotes for acetaminophen overdose. Arch Toxicol 96:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashcraft KA, Choudhury KR, Birer SR, Hendargo HC, Patel P, Eichenbaum G, Dewhirst MW (2018) Application of a novel murine ear vein model to evaluate the effects of a vascular radioprotectant on radiation-induced vascular permeability and leukocyte adhesion. Radiat Res 190:12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajt ML, Cover C, Lemasters JJ, Jaeschke H (2006) Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 94:217–225

    Article  CAS  PubMed  Google Scholar 

  • Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhushan B, Chavan H, Borude P, Xie Y, Du K, McGill MR, Lebofsky M, Jaeschke H, Krishnamurthy P, Apte U (2017) Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice. Toxicol Sci 155:363–378

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Walesky C, Manley M, Gallagher T, Borude P, Edwards G, Monga SP, Apte U (2014) Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am J Pathol 184:3013–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda S, Mangipudy RS, Warbritton A, Bucci TJ, Mehendale HM (1995) Stimulated hepatic tissue repair underlies heteroprotection by thioacetamide against acetaminophen-induced lethality. Hepatology 21:477–486

    CAS  PubMed  Google Scholar 

  • Chauhan A, Sheriff L, Hussain MT, Webb GJ, Patten DA, Shepherd EL, Shaw R, Weston CJ, Haldar D, Bourke S, Bhandari R, Watson S, Adams DH, Watson SP, Lalor PF (2020) The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat Commun 11:1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Herceg-Harjacek L, Groopman JE, Grabarek J (1995) Regulation of platelet activation in vitro by the c-Mpl ligand, thrombopoietin. Blood 86:4054–4062

    Article  CAS  PubMed  Google Scholar 

  • Clemens MM, McGill MR, Apte U (2019) Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. Adv Pharmacol 85:241–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, Hinson JA (1997) Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 143:1–12

    Article  CAS  PubMed  Google Scholar 

  • Corcoran GB, Racz WJ, Smith CV, Mitchell JR (1985) Effects of N-acetylcysteine on acetaminophen covalent binding and hepatic necrosis in mice. J Pharmacol Exp Ther 232:864–872

    CAS  PubMed  Google Scholar 

  • Corcoran GB, Wong BK (1986) Role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-l-cysteine in vivo: studies with N-acetyl-d-cysteine in mice. J Pharmacol Exp Ther 238:54–61

    CAS  PubMed  Google Scholar 

  • Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL (2002) Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology 35:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • DeLeve LD, Wang X, Kaplowitz N, Shulman HM, Bart JA, van der Hoek A (1997) Sinusoidal endothelial cells as a target for acetaminophen toxicity. Direct action versus requirement for hepatocyte activation in different mouse strains. Biochem Pharmacol 53:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischereder M, Jaffe JP (1994) Thrombocytopenia following acute acetaminophen overdose. Am J Hematol 45:258–259

    Article  CAS  PubMed  Google Scholar 

  • Ganey PE, Luyendyk JP, Newport SW, Eagle TM, Maddox JF, Mackman N, Roth RA (2007) Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology 46:1177–1186

    Article  CAS  PubMed  Google Scholar 

  • Ghanima W, Cooper N, Rodeghiero F, Godeau B, Bussel JB (2019) Thrombopoietin receptor agonists: ten years later. Haematologica 104:1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groeneveld DJ, Poole LG, Bouck EG, Schulte A, Wei Z, Williams KJ, Watson VE, Lisman T, Wolberg AS, Luyendyk JP (2023) Robust coagulation activation and coagulopathy in mice with experimental acetaminophen-induced liver failure. J Thromb Haemost 21:2430–2440

    Article  PubMed  Google Scholar 

  • Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565–13577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitchcock IS, Kaushansky K (2014) Thrombopoietin from beginning to end. Br J Haematol 165:259–268

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock IS, Hafer M, Sangkhae V, Tucker JA (2021) The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets 32:770–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt MP, Cheng L, Ju C (2008) Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol 84:1410–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt MP, Yin H, Ju C (2010) Exacerbation of acetaminophen-induced disturbances of liver sinusoidal endothelial cells in the absence of kupffer cells in mice. Toxicol Lett 194:34–41

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, McGaughey J, Bell A, Blazer LL, Adams JJ, Sidhu SS, Angers S, Monga SP (2022) Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med 3:100754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H, Xie Y, McGill MR (2014) Acetaminophen-induced liver injury: from animal models to humans. J Clin Transl Hepatol 2:153–161

    PubMed  PubMed Central  Google Scholar 

  • Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-Guerrero G, Umbaugh DS, Ding WX, Ramachandran A (2021a) Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 11:3740–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM, Hardisty JF, Atillasoy E, Hermanowski-Vosatka A, Kuffner E, Wikoff D, Chappell GA, Bandara SB, Deore M, Pitchaiyan SK, Eichenbaum G (2021b) Assessment of the biochemical pathways for acetaminophen toxicity: implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 120:104859

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    CAS  PubMed  Google Scholar 

  • Jungermann K (1986) Functional heterogeneity of periportal and perivenous hepatocytes. Enzyme 35:161–180

    Article  CAS  PubMed  Google Scholar 

  • Kaushansky K, Lin N, Grossmann A, Humes J, Sprugel KH, Broudy VC (1996) Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocytic progenitor cells in normal and myelosuppressed mice. Exp Hematol 24:265–269

    CAS  PubMed  Google Scholar 

  • Kayano K, Yasunaga M, Kubota M, Takenaka K, Mori K, Yamashita A, Kubo Y, Sakaida I, Okita K, Sanuki K (1992) Detection of proliferating hepatocytes by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) in patients with acute hepatic failure. Liver 12:132–136

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RC, Smith AK, Ropella GEP, McGill MR, Jaeschke H, Hunt CA (2019) Propagation of pericentral necrosis during acetaminophen-induced liver injury: evidence for early interhepatocyte communication and information exchange. Toxicol Sci 169:151–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirito K, Kaushansky K (2005) Thrombopoietin stimulates vascular endothelial cell growth factor (VEGF) production in hematopoietic stem cells. Cell Cycle 4:1729–1731

    Article  CAS  PubMed  Google Scholar 

  • Knight E, Eichenbaum G, Hillsamer V, Greway T, Tonelli A, Han-Hsu H, Zakszewski C, Yurkow E, Shukla U, End D, Louden C (2011) Nonclinical safety assessment of a synthetic peptide thrombopoietin agonist: effects on platelets, bone homeostasis, and immunogenicity and the implications for clinical safety monitoring of adverse bone effects. Int J Toxicol 30:385–404

    Article  CAS  PubMed  Google Scholar 

  • Kon K, Kim JS, Uchiyama A, Jaeschke H, Lemasters JJ (2010) Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes. Toxicol Sci 117:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubes P, Mehal WZ (2012) Sterile inflammation in the liver. Gastroenterology 143:1158–1172

    Article  CAS  PubMed  Google Scholar 

  • Kusnik A, Mostafa MR, Hunter N, Sharma R, Jamal H, Hameed M (2022) Fomepizole as an emerging adjunct in treating severe acetaminophen toxicity: a case report and a brief review. J Gastrointestin Liver Dis 31:481–482

    Article  PubMed  Google Scholar 

  • Kuter DJ (2013) The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol 98:10–23

    Article  CAS  PubMed  Google Scholar 

  • Laine JE, Auriola S, Pasanen M, Juvonen RO (2009) Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39:11–21

    Article  CAS  PubMed  Google Scholar 

  • Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiødt FV, Ostapowicz G, Shakil AO, Lee WM (2005) Acetaminophen-induced acute liver failure: results of a united states multicenter, prospective study. Hepatology 42:1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Lee WM (2017) Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? J Hepatol 67:1324–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SST, Buters JTM, Pineau T, Fernandez-Salguero P, Gonzalez FJ (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271:12063–12067

    Article  CAS  PubMed  Google Scholar 

  • Licata A, Minissale MG, Stankevičiūtė S, Sanabria-Cabrera J, Lucena MI, Andrade RJ, Almasio PL (2022) N-acetylcysteine for preventing acetaminophen-induced liver Injury: a comprehensive review. Front Pharmacol 13:828565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liem-Moolenaar M, Cerneus D, Molloy CJ, End D, Brown KH, de Kam ML, Cohen AF, van Hensbergen Y, Burggraaf J (2008) Pharmacodynamics and pharmacokinetics of the novel thrombopoietin mimetic peptide RWJ-800088 in humans. Clin Pharmacol Ther 84:481–487

    Article  CAS  PubMed  Google Scholar 

  • Link SL, Rampon G, Osmon S, Scalzo AJ, Rumack BH (2022) Fomepizole as an adjunct in acetylcysteine treated acetaminophen overdose patients: a case series. Clin Toxicol (phila) 60:472–477

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Martínez-Ramírez AS, Borders TL, Gao F, Sosa-Pineda B (2020) Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal wnts. Elife 9:e46206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCuskey RS (2006) Sinusoidal endothelial cells as an early target for hepatic toxicants. Clin Hemorheol Microcirc 34:5–10

    CAS  PubMed  Google Scholar 

  • McGill MR, Jaeschke H (2015) A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol Mech Methods 25:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H (2011) HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53:974–982

    Article  CAS  PubMed  Google Scholar 

  • McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H (2012) Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 264:387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill MR, Lebofsky M, Norris HR, Slawson MH, Bajt ML, Xie Y, Williams CD, Wilkins DG, Rollins DE, Jaeschke H (2013) Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol Appl Pharmacol 269:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187:185–194

    CAS  PubMed  Google Scholar 

  • Mitchell JR, Thorgeirsson SS, Potter WZ, Jollow DJ, Keiser H (1974) Acetaminophen-induced hepatic injury: protective role of glutathione in man and rationale for therapy. Clin Pharmacol Ther 16:676–684

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa K, Joshi N, Sullivan BP, Albee R, Brandenberger C, Jaeschke H, McGill MR, Scott MA, Ganey PE, Luyendyk JP, Roth RA (2015) Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice. Blood 125:1835–1843

    Article  Google Scholar 

  • Mouthon MA, Gaugler MH, Van der Meeren A, Vandamme M, Gourmelon P, Wagemaker G (2001) Single administration of thrombopoietin to lethally irradiated mice prevents infectious and thrombotic events leading to mortality. Exp Hematol 29:30–40

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, Du K, Akakpo JY, Umbaugh DS, Jaeschke H, Ramachandran A (2021) Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicol Lett 338:21–31

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, Umbaugh DS, Sanchez-Guerrero G, Ramachandran A, Jaeschke H (2022) Kupffer cells regulate liver recovery through induction of chemokine receptor CXCR2 on hepatocytes after acetaminophen overdose in mice. Arch Toxicol 96:305–320

    Article  CAS  PubMed  Google Scholar 

  • Nourjah P, Ahmad SR, Karwoski C, Willy M (2006) Estimates of acetaminophen (paracetomal)-associated overdoses in the united states. Pharmacoepidemiol Drug Saf 15:398–405

    Article  PubMed  Google Scholar 

  • Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity. Semin Liver Dis 39:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuben A, Tillman H, Fontana RJ, Davern T, McGuire B, Stravitz RT, Durkalski V, Larson AM, Liou I, Fix O, Schilsky M, McCashland T, Hay JE, Murray N, Shaikh OS, Ganger D, Zaman A, Han SB, Chung RT, Lee WM (2016) Outcomes in adults with acute liver failure between 1998 and 2013. Ann Intern Med 164:724–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts DW, Bucci TJ, Benson RW, Warbritton AR, McRae TA, Pumford NR, Hinson JA (1991) Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity. Am J Pathol 138:359–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumack BH, Peterson RG (1978) Acetaminophen overdose: incidence, diagnosis, and management in 416 patients. Pediatrics 62(5 Pt 2 Suppl):898–903

    Article  CAS  PubMed  Google Scholar 

  • Saito C, Lemasters JJ, Jaeschke H (2010a) c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 246:8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito C, Zwingmann C, Jaeschke H (2010b) Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51:246–254

    Article  CAS  PubMed  Google Scholar 

  • Shido K, Chavez D, Cao Z, Ko J, Rafii S, Ding BS (2017) Platelets prime hematopoietic and vascular niche to drive angiocrine-mediated liver regeneration. Signal Transduct Target Ther 2:16044

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schiødt F (2003) Thrombopoietin in acute liver failure. Hepatology 37:558–561

    Article  PubMed  Google Scholar 

  • Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH (1988) Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. N Engl J Med 319:1557–1562

    Article  CAS  PubMed  Google Scholar 

  • Thon JN, Italiano JE (2010) Platelet formation. Semin Hematol 47:220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torii Y, Nitta Y, Akahori H, Tawara T, Kuwaki T, Ogami K, Kato T, Miyazaki H (1998) Mobilization of primitive haemopoietic progenitor cells and stem cells with long-term repopulating ability into peripheral blood in mice by pegylated recombinant human megakaryocyte growth and development factor. Br J Haematol 103:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Umbaugh DS, Ramachandran A, Jaeschke H (2021) Spatial reconstruction of the early hepatic transcriptomic landscape after an acetaminophen overdose using single-cell RNA-sequencing. Toxicol Sci 182:327–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Burke LJ, Patel J, Tse BW, Bridle KR, Cogger VC, Li X, Liu X, Yang H, Crawford DHG, Roberts MS, Gao W, Liang X (2020) Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics 10:6715–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AM, Langley PG, Osei-Hwediah J, Wendon JA, Hughes RD (2003) Hyaluronic acid and endothelial damage due to paracetamol-induced hepatotoxicity. Liver Int 23:110–115

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM, Forster J, Jaeschke H (2014) Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol 279:266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, Fu L, Tian C, Yang J, He F, Tang L (2019) Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 10:1076

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N (2016) Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 4:131–142

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a grant from Johnson & Johnson, Consumer Health and by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Grants R01 DK102142 and R01 DK125465, and National Institute of General Medicine (NIGMS) funded Liver Disease COBRE Grants P20 GM103549 and P30 GM118247. JYA was funded by a postdoctoral fellowship from the CTSA grant from NCATS awarded at the University of Kansas for Frontiers: University of Kansas Clinical and Translational Science Institute No. TL1TR002368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Jaeschke.

Ethics declarations

Conflict of interest

GE and ES were employees of Johnson & Johnson; HJ was the recipient of research grants from Johnson & Johnson Consumer Health; all others have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelusi, O.B., Akakpo, J.Y., Eichenbaum, G. et al. The thrombopoietin mimetic JNJ-26366821 reduces the late injury and accelerates the onset of liver recovery after acetaminophen-induced liver injury in mice. Arch Toxicol 98, 1843–1858 (2024). https://doi.org/10.1007/s00204-024-03725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-024-03725-2

Keywords

Navigation