Skip to main content

Advertisement

Log in

The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Osteoporosis is the prevalent metabolic bone disease characterized by a decrease in bone quantity and/or quality and an increase in skeletal fragility, which increases susceptibility to fractures. Osteoporotic fractures severely affect the patients’ quality of life and mortality. A plethora of evidences have suggested that the alterations in gut microbiome are associated with the changes in bone mass and microstructure. We summarized pre-clinical and clinical studies to elucidate the underlying mechanism of gut microbiota in osteoporosis. Probiotics, prebiotics, and traditional Chinese medicine may reverse the gut microbiota dysbiosis and consequently improve bone metabolism. However, the causality of gut microbiota on bone metabolism need to be investigated more in depth. In the present review, we focused on the potential mechanism of the microbiota-gut-bone axis and the positive therapeutic effect of probiotics, prebiotics, and traditional Chinese medicine on osteoporosis. Overall, the current scientific literatures support that the gut microbiota may be a novel therapeutic target in treatment of osteoporosis and fracture prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1:718–725. https://doi.org/10.1007/s13238-010-0093-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yadav D, Ghosh TS, Mande SS (2016) Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups. Gut Pathog 8:17. https://doi.org/10.1186/s13099-016-0099-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11:1–10. https://doi.org/10.1007/s12328-017-0813-5

    Article  PubMed  Google Scholar 

  5. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF (2017) The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2:747–756. https://doi.org/10.1016/s2468-1253(17)30147-4

    Article  PubMed  Google Scholar 

  6. Chen Y, Wang M (2021) New insights of anti-hyperglycemic agents and traditional Chinese medicine on gut microbiota in type 2 diabetes. Drug Des Devel Ther 15:4849–4863. https://doi.org/10.2147/dddt.S334325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X, Zhao M (2020) Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev 2020:5394096. https://doi.org/10.1155/2020/5394096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pai MV (2017) Osteoporosis Prevention and Management. J Obstet Gynaecol India 67:237–242. https://doi.org/10.1007/s13224-017-0994-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

    Article  CAS  PubMed  Google Scholar 

  10. Karlamangla AS, Burnett-Bowie SM, Crandall CJ (2018) Bone health during the menopause transition and beyond. Obstet Gynecol Clin North Am 45:695–708. https://doi.org/10.1016/j.ogc.2018.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  11. He J, Xu S, Zhang B, Xiao C, Chen Z, Si F, Fu J, Lin X, Zheng G, Yu G, Chen J (2020) Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging (Albany NY) 12:8583–8604. https://doi.org/10.18632/aging.103168

    Article  CAS  Google Scholar 

  12. Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, Li X, Zeng J, Wang Q (2019) Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int 30:1003–1013. https://doi.org/10.1007/s00198-019-04855-5

    Article  CAS  PubMed  Google Scholar 

  13. Rettedal EA, Ilesanmi-Oyelere BL, Roy NC, Coad J, Kruger MC (2021) The gut microbiome is altered in postmenopausal women with osteoporosis and osteopenia. JBMR Plus 5:e10452. https://doi.org/10.1002/jbm4.10452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schoultz I, Keita ÅV (2020) The intestinal barrier and current techniques for the assessment of gut permeability. Cells 9:1909. https://doi.org/10.3390/cells9081909

    Article  CAS  PubMed Central  Google Scholar 

  15. Otani T, Furuse M (2020) Tight junction structure and function revisited. Trends Cell Biol 30:805–817. https://doi.org/10.1016/j.tcb.2020.08.004

    Article  CAS  PubMed  Google Scholar 

  16. Wang N, Ma S, Fu L (2022) Gut microbiota dysbiosis as one cause of osteoporosis by impairing intestinal barrier function. Calcif Tissue Int 110:225–235. https://doi.org/10.1007/s00223-021-00911-7

    Article  CAS  PubMed  Google Scholar 

  17. Ma S, Wang N, Zhang P, Wu W, Fu L (2021) Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ 9:e12293. https://doi.org/10.7717/peerj.12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, Raghuvanshi R, Quinn RA, Britton R, Parameswaran N, McCabe LR (2020) Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J Bone Miner Res 35:801–820. https://doi.org/10.1002/jbmr.3947

    Article  CAS  PubMed  Google Scholar 

  19. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5:e73. https://doi.org/10.1038/cti.2016.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallimann A, Magrath W, Thompson K, Moriarty T, Richards RG, Akdis CA, O’Mahony L, Hernandez CJ (2021) Gut microbial-derived short-chain fatty acids and bone: a potential role in fracture healing. Eur Cell Mater 41:454–470. https://doi.org/10.22203/eCM.v041a29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coburn JM, Wo L, Bernstein N, Bhattacharya R, Aich U, Bingham CO 3rd, Yarema KJ, Elisseeff JH (2013) Short-chain fatty acid-modified hexosamine for tissue-engineering osteoarthritic cartilage. Tissue Eng Part A 19:2035–2044. https://doi.org/10.1089/ten.TEA.2012.0317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Y, He F, Zhang C, Zhang Q, Su X, Zhu X, Liu A, Shi W, Lin W, Jin Z, Yang H, Lin J (2021) Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. J Nanobiotechnology 19:170. https://doi.org/10.1186/s12951-021-00915-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lv S, Wang Y, Zhang W, Shang H (2022) Trimethylamine oxide: a potential target for heart failure therapy. Heart 108:917–922. https://doi.org/10.1136/heartjnl-2021-320054

    Article  CAS  PubMed  Google Scholar 

  24. Lin H, Liu T, Li X, Gao X, Wu T, Li P (2020) The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease. Ann Transl Med 8:1009. https://doi.org/10.21037/atm-20-5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Guo YL, Meng S, Gao H, Sui LJ, Jin S, Li Y, Fan SG (2020) Gut microbiota-dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study. Aging (Albany NY) 12:10633–10641. https://doi.org/10.18632/aging.103283

    Article  CAS  Google Scholar 

  26. Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535–536. https://doi.org/10.1038/35046196

    Article  CAS  PubMed  Google Scholar 

  27. Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C (2020) The correlation between the Th17/Treg cell balance and bone health. Immun Ageing 17:30. https://doi.org/10.1186/s12979-020-00202-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G (2007) Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56:4104–4112. https://doi.org/10.1002/art.23138

    Article  CAS  PubMed  Google Scholar 

  29. Yuan FL, Li X, Lu WG, Xu RS, Zhao YQ, Li CW, Li JP, Chen FH (2010) Regulatory T cells as a potent target for controlling bone loss. Biochem Biophys Res Commun 402:173–176. https://doi.org/10.1016/j.bbrc.2010.09.120

    Article  CAS  PubMed  Google Scholar 

  30. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682. https://doi.org/10.1084/jem.20061775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu E, Pacifici R (2018) From osteoimmunology to osteomicrobiology: how the microbiota and the immune system regulate bone. Calcif Tissue Int 102:512–521. https://doi.org/10.1007/s00223-017-0321-0

    Article  CAS  PubMed  Google Scholar 

  32. Talaat RM, Sidek A, Mosalem A, Kholief A (2015) Effect of bisphosphonates treatment on cytokine imbalance between TH17 and Treg in osteoporosis. Inflammopharmacology 23:119–125. https://doi.org/10.1007/s10787-015-0233-4

    Article  CAS  PubMed  Google Scholar 

  33. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  34. Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, Hofmann J, Raifer H, Vachharajani N, Carrascosa LC, Lamp B, Nist A, Stiewe T, Shaul Y, Adhikary T, Zaiss MM, Lauth M, Steinhoff U, Visekruna A (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun 10:760. https://doi.org/10.1038/s41467-019-08711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun P, Zhang C, Huang Y, Yang J, Zhou F, Zeng J, Lin Y (2022) Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed Pharmacother 150:112975. https://doi.org/10.1016/j.biopha.2022.112975

    Article  CAS  PubMed  Google Scholar 

  36. Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N, Srivastava RK (2018) Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition 54:118–128. https://doi.org/10.1016/j.nut.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  37. Dar HY, Shukla P, Mishra PK, Anupam R, Mondal RK, Tomar GB, Sharma V, Srivastava RK (2018) Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep 8:46–56. https://doi.org/10.1016/j.bonr.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sapra L, Dar HY, Bhardwaj A, Pandey A, Kumari S, Azam Z, Upmanyu V, Anwar A, Shukla P, Mishra PK, Saini C, Verma B, Srivastava RK (2021) Lactobacillus rhamnosus attenuates bone loss and maintains bone health by skewing Treg-Th17 cell balance in Ovx mice. Sci Rep 11:1807. https://doi.org/10.1038/s41598-020-80536-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wein MN, Kronenberg HM (2018) Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med 8:a031237. https://doi.org/10.1101/cshperspect.a031237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iida-Klein A, Lu SS, Kapadia R, Burkhart M, Moreno A, Dempster DW, Lindsay R (2005) Short-term continuous infusion of human parathyroid hormone 1–34 fragment is catabolic with decreased trabecular connectivity density accompanied by hypercalcemia in C57BL/J6 mice. J Endocrinol 186:549–557. https://doi.org/10.1677/joe.1.06270

    Article  CAS  PubMed  Google Scholar 

  41. Walker MD, Silverberg SJ (2018) Primary hyperparathyroidism. Nat Rev Endocrinol 14:115–125. https://doi.org/10.1038/nrendo.2017.104

    Article  CAS  PubMed  Google Scholar 

  42. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446. https://doi.org/10.1016/j.bone.2007.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, Weitzmann MN, Jones RM, Pacifici R (2020) Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J Clin Invest 130:1767–1781. https://doi.org/10.1172/jci133473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khosla S (2020) The microbiome adds to the complexity of parathyroid hormone action on bone. J Clin Invest 130:1615–1617. https://doi.org/10.1172/jci135712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22:1924–1932. https://doi.org/10.1359/jbmr.070810

    Article  CAS  PubMed  Google Scholar 

  46. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102:3324–3329. https://doi.org/10.1073/pnas.0408742102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dixit M, Poudel SB, Yakar S (2021) Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 519:111052. https://doi.org/10.1016/j.mce.2020.111052

    Article  CAS  PubMed  Google Scholar 

  48. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351:854–857. https://doi.org/10.1126/science.aad8588

    Article  CAS  PubMed  Google Scholar 

  49. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA 113:E7554-e7563. https://doi.org/10.1073/pnas.1607235113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Balakrishna P, George S, Hatoum H, Mukherjee S (2021) Serotonin pathway in cancer. Int J Mol Sci 22:1268. https://doi.org/10.3390/ijms22031268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bliziotes M (2010) Update in serotonin and bone. J Clin Endocrinol Metab 95:4124–4132. https://doi.org/10.1210/jc.2010-0861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lavoie B, Roberts JA, Haag MM, Spohn SN, Margolis KG, Sharkey KA, Lian JB, Mawe GM (2019) Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res 140:75–84. https://doi.org/10.1016/j.phrs.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  53. Carsote M, Radoi V, Geleriu A, Mihai A, Ferechide D, Opris D, Paun D, Poiana C (2014) Serotonin and the bone assessment. J Med Life 7:49–53

    PubMed  PubMed Central  Google Scholar 

  54. Wei QS, Chen ZQ, Tan X, Kang LC, Jiang XB, Liang J, He W, Deng WM (2017) Serum serotonin concentration associated with bone mineral density in Chinese postmenopausal women. Scand J Clin Lab Invest 77:40–44. https://doi.org/10.1080/00365513.2016.1247983

    Article  CAS  PubMed  Google Scholar 

  55. Ducy P, Karsenty G (2010) The two faces of serotonin in bone biology. J Cell Biol 191:7–13. https://doi.org/10.1083/jcb.201006123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb j 29:1395–1403. https://doi.org/10.1096/fj.14-259598

    Article  CAS  PubMed  Google Scholar 

  58. Yan J, Takakura A, Zandi-Nejad K, Charles JF (2018) Mechanisms of gut microbiota-mediated bone remodeling. Gut Microbes 9:84–92. https://doi.org/10.1080/19490976.2017.1371893

    Article  CAS  PubMed  Google Scholar 

  59. Mödder UI, Achenbach SJ, Amin S, Riggs BL, Melton LJ 3rd, Khosla S (2010) Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res 25:415–422. https://doi.org/10.1359/jbmr.090721

    Article  CAS  PubMed  Google Scholar 

  60. Morris HA, O’Loughlin PD, Anderson PH (2010) Experimental evidence for the effects of calcium and vitamin D on bone: a review. Nutrients 2:1026–1035. https://doi.org/10.3390/nu2091026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weaver CM (2015) Diet, gut microbiome, and bone health. Curr Osteoporos Rep 13:125–130. https://doi.org/10.1007/s11914-015-0257-0

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wallace TC, Marzorati M, Spence L, Weaver CM, Williamson PS (2017) New frontiers in fibers: innovative and emerging research on the gut microbiome and bone health. J Am Coll Nutr 36:218–222. https://doi.org/10.1080/07315724.2016.1257961

    Article  PubMed  Google Scholar 

  63. Mineo H, Hara H, Tomita F (2001) Short-chain fatty acids enhance diffusional ca transport in the epithelium of the rat cecum and colon. Life Sci 69:517–526. https://doi.org/10.1016/s0024-3205(01)01146-8

    Article  CAS  PubMed  Google Scholar 

  64. Jones ML, Martoni CJ, Prakash S (2013) Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab 98:2944–2951. https://doi.org/10.1210/jc.2012-4262

    Article  CAS  PubMed  Google Scholar 

  65. Wu S, Yoon S, Zhang YG, Lu R, Xia Y, Wan J, Petrof EO, Claud EC, Chen D, Sun J (2015) Vitamin D receptor pathway is required for probiotic protection in colitis. Am J Physiol Gastrointest Liver Physiol 309:G341-349. https://doi.org/10.1152/ajpgi.00105.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Black DM, Rosen CJ (2016) Clinical practice. Postmenopausal osteoporosis N Engl J Med 374:254–262. https://doi.org/10.1056/NEJMcp1513724

    Article  CAS  PubMed  Google Scholar 

  67. Ma S, Qin J, Hao Y, Shi Y, Fu L (2020) Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass. Aging (Albany NY) 12:10736–10753. https://doi.org/10.18632/aging.103290

    Article  CAS  Google Scholar 

  68. Ma S, Qin J, Hao Y, Fu L (2020) Association of gut microbiota composition and function with an aged rat model of senile osteoporosis using 16S rRNA and metagenomic sequencing analysis. Aging (Albany NY) 12:10795–10808. https://doi.org/10.18632/aging.103293

    Article  CAS  Google Scholar 

  69. Das M, Cronin O, Keohane DM, Cormac EM, Nugent H, Nugent M, Molloy C, O’Toole PW, Shanahan F, Molloy MG, Jeffery IB (2019) Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford) 58:2295–2304. https://doi.org/10.1093/rheumatology/kez302

    Article  Google Scholar 

  70. Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen J, Yang K, Da W, Zhu Y (2020) Fecal and serum metabolomic signatures and microbial community profiling of postmenopausal osteoporosis mice model. Front Cell Infect Microbiol 10:535310. https://doi.org/10.3389/fcimb.2020.535310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, Ji Y, Hao D (2017) Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ 5:e3450. https://doi.org/10.7717/peerj.3450

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wei M, Li C, Dai Y, Zhou H, Cui Y, Zeng Y, Huang Q, Wang Q (2021) High-throughput absolute quantification sequencing revealed osteoporosis-related gut microbiota alterations in Han Chinese elderly. Front Cell Infect Microbiol 11:630372. https://doi.org/10.3389/fcimb.2021.630372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5:908–923. https://doi.org/10.1016/s2213-8587(17)30184-5

    Article  PubMed  Google Scholar 

  74. Stock M, Schett G (2021) Vitamin K-dependent proteins in skeletal development and disease. Int J Mol Sci 22:9328. https://doi.org/10.3390/ijms22179328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guss JD, Taylor E, Rouse Z, Roubert S, Higgins CH, Thomas CJ, Baker SP, Vashishth D, Donnelly E, Shea MK, Booth SL, Bicalho RC, Hernandez CJ (2019) The microbial metagenome and bone tissue composition in mice with microbiome-induced reductions in bone strength. Bone 127:146–154. https://doi.org/10.1016/j.bone.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N (2021) Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int 32:145–156. https://doi.org/10.1007/s00198-020-05728-y

    Article  CAS  PubMed  Google Scholar 

  77. Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Väänänen HK (2006) Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin Lab 52:499–509

    CAS  PubMed  Google Scholar 

  78. Ling CW, Miao Z, Xiao ML, Zhou H, Jiang Z, Fu Y, Xiong F, Zuo LS, Liu YP, Wu YY, Jing LP, Dong HL, Chen GD, Ding D, Wang C, Zeng FF, Zhu HL, He Y, Zheng JS, Chen YM (2021) The association of gut microbiota with osteoporosis is mediated by amino acid metabolism: multiomics in a large cohort. J Clin Endocrinol Metab 106:e3852–e3864. https://doi.org/10.1210/clinem/dgab492

    Article  PubMed  Google Scholar 

  79. Antoine JM (2010) Probiotics: beneficial factors of the defence system. Proc Nutr Soc 69:429–433. https://doi.org/10.1017/s0029665110001692

    Article  CAS  PubMed  Google Scholar 

  80. Van Loo JA (2004) Prebiotics promote good health: the basis, the potential, and the emerging evidence. J Clin Gastroenterol 38:S70-75. https://doi.org/10.1097/01.mcg.0000128928.99037.e6

    Article  PubMed  Google Scholar 

  81. Schepper JD, Irwin R, Kang J, Dagenais K, Lemon T, Shinouskis A, Parameswaran N, McCabe LR (2017) Probiotics in gut-bone signaling. Adv Exp Med Biol 1033:225–247. https://doi.org/10.1007/978-3-319-66653-2_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Whisner CM, Castillo LF (2018) Prebiotics, bone and mineral metabolism. Calcif Tissue Int 102:443–479. https://doi.org/10.1007/s00223-017-0339-3

    Article  CAS  PubMed  Google Scholar 

  83. Kim DE, Kim JK, Han SK, Jang SE, Han MJ, Kim DH (2019) Lactobacillus plantarum NK3 and Bifidobacterium longum NK49 alleviate bacterial vaginosis and osteoporosis in mice by suppressing NF-κB-linked TNF-α expression. J Med Food 22:1022–1031. https://doi.org/10.1089/jmf.2019.4419

    Article  CAS  PubMed  Google Scholar 

  84. Yuan S, Shen J (2021) Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice. Bone 142:115710. https://doi.org/10.1016/j.bone.2020.115710

    Article  CAS  PubMed  Google Scholar 

  85. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, Ahmad Z, Ibrahim Z, Jamaluddin R (2015) Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int 2015:897639. https://doi.org/10.1155/2015/897639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229:1822–1830. https://doi.org/10.1002/jcp.24636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, Liu Y, Wei Q, Zhou Y (2019) Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 10:2040622319860653. https://doi.org/10.1177/2040622319860653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li P, Sundh D, Ji B, Lappa D, Ye L, Nielsen J, Lorentzon M (2021) Metabolic alterations in older women with low bone mineral density supplemented with Lactobacillus reuteri. JBMR Plus 5:e10478. https://doi.org/10.1002/jbm4.10478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen C, Dong B, Wang Y, Zhang Q, Wang B, Feng S, Zhu Y (2020) The role of Bacillus acidophilus in osteoporosis and its roles in proliferation and differentiation. J Clin Lab Anal 34:e23471. https://doi.org/10.1002/jcla.23471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, Morita H, Nakamura T (2018) Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: a randomized, placebo-controlled, double-blind clinical trial. Biosci Microbiota Food Health 37:87–96. https://doi.org/10.12938/bmfh.18-006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Porwal K, Pal S, Kulkarni C, Singh P, Sharma S, Singh P, Prajapati G, Gayen JR, Ampapathi RS, Mullick A, Chattopadhyay N (2020) A prebiotic, short-chain fructo-oligosaccharides promotes peak bone mass and maintains bone mass in ovariectomized rats by an osteogenic mechanism. Biomed Pharmacother 129:110448. https://doi.org/10.1016/j.biopha.2020.110448

    Article  CAS  PubMed  Google Scholar 

  92. Tousen Y, Matsumoto Y, Nagahata Y, Kobayashi I, Inoue M, Ishimi Y (2019) Resistant starch attenuates bone loss in ovariectomised mice by regulating the intestinal microbiota and bone-marrow inflammation. Nutrients 11:297. https://doi.org/10.3390/nu11020297

    Article  CAS  PubMed Central  Google Scholar 

  93. Tanabe K, Nakamura S, Moriyama-Hashiguchi M, Kitajima M, Ejima H, Imori C, Oku T (2019) Dietary fructooligosaccharide and glucomannan alter gut microbiota and improve bone metabolism in senescence-accelerated mouse. J Agric Food Chem 67:867–874. https://doi.org/10.1021/acs.jafc.8b05164

    Article  CAS  PubMed  Google Scholar 

  94. Chen X, Zhang Z, Hu Y, Cui J, Zhi X, Li X, Jiang H, Wang Y, Gu Z, Qiu Z, Dong X, Li Y, Su J (2020) Lactulose suppresses osteoclastogenesis and ameliorates estrogen deficiency-induced bone loss in mice. Aging Dis 11:629–641. https://doi.org/10.14336/ad.2019.0613

    Article  PubMed  Google Scholar 

  95. (2021) Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause 28:973-997 https://doi.org/10.1097/gme.0000000000001831

  96. Greenway F, Liu Z, Yu Y, Gupta A (2011) A clinical trial testing the safety and efficacy of a standardized Eucommia ulmoides Oliver bark extract to treat hypertension. Altern Med Rev 16:338–347

    PubMed  Google Scholar 

  97. He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R, Tao R (2014) Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 151:78–92. https://doi.org/10.1016/j.jep.2013.11.023

    Article  PubMed  Google Scholar 

  98. Zhang R, Pan YL, Hu SJ, Kong XH, Juan W, Mei QB (2014) Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro. J Ethnopharmacol 155:104–112. https://doi.org/10.1016/j.jep.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  99. Zhao X, Wang Y, Nie Z, Han L, Zhong X, Yan X, Gao X (2020) Eucommia ulmoides leaf extract alters gut microbiota composition, enhances short-chain fatty acids production, and ameliorates osteoporosis in the senescence-accelerated mouse P6 (SAMP6) model. Food Sci Nutr 8:4897–4906. https://doi.org/10.1002/fsn3.1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mei F, Meng K, Gu Z, Yun Y, Zhang W, Zhang C, Zhong Q, Pan F, Shen X, Xia G, Chen H (2021) Arecanut (Areca catechu L.) Seed polyphenol-ameliorated osteoporosis by altering gut microbiome via LYZ and the immune system in estrogen-deficient rats. J Agric Food Chem 69:246–258. https://doi.org/10.1021/acs.jafc.0c06671

    Article  CAS  PubMed  Google Scholar 

  101. Geng JL, Dai Y, Yao ZH, Qin ZF, Wang XL, Qin L, Yao XS (2014) Metabolites profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J Pharm Biomed Anal 96:90–103. https://doi.org/10.1016/j.jpba.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  102. Tang XY, Gao MX, Xiao HH, Dai ZQ, Yao ZH, Dai Y, Yao XS (2021) Effects of Xian-Ling-Gu-Bao capsule on the gut microbiota in ovariectomized rats: metabolism and modulation. J Chromatogr B Analyt Technol Biomed Life Sci 1176:122771. https://doi.org/10.1016/j.jchromb.2021.122771

    Article  CAS  PubMed  Google Scholar 

  103. Ding Z, Hani A, Li W, Gao L, Ke W, Guo X (2020) Influence of a cholesterol-lowering strain Lactobacillus plantarum LP3 isolated from traditional fermented yak milk on gut bacterial microbiota and metabolome of rats fed with a high-fat diet. Food Funct 11:8342–8353. https://doi.org/10.1039/d0fo01939a

    Article  CAS  PubMed  Google Scholar 

  104. Kumari S, Raines JM, Martin JM, Rodriguez JM (2015) Thermal stability of kudzu root (Pueraria Radix) isoflavones as additives to beef patties. J Food Sci Technol 52:1578–1585. https://doi.org/10.1007/s13197-013-1112-x

    Article  CAS  PubMed  Google Scholar 

  105. Suthon S, Jaroenporn S, Charoenphandhu N, Suntornsaratoon P, Malaivijitnond S (2016) Anti-osteoporotic effects of Pueraria candollei var. mirifica on bone mineral density and histomorphometry in estrogen-deficient rats. J Nat Med 70:225–233. https://doi.org/10.1007/s11418-016-0965-5

    Article  PubMed  Google Scholar 

  106. Urasopon N, Hamada Y, Cherdshewasart W, Malaivijitnond S (2008) Preventive effects of Pueraria mirifica on bone loss in ovariectomized rats. Maturitas 59:137–148. https://doi.org/10.1016/j.maturitas.2008.01.001

    Article  PubMed  Google Scholar 

  107. Li B, Liu M, Wang Y, Gong S, Yao W, Li W, Gao H, Wei M (2020) Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity. Biomed Pharmacother 132:110923. https://doi.org/10.1016/j.biopha.2020.110923

    Article  CAS  PubMed  Google Scholar 

  108. Chen B, Wang L, Li L, Zhu R, Liu H, Liu C, Ma R, Jia Q, Zhao D, Niu J, Fu M, Gao S, Zhang D (2017) Fructus Ligustri Lucidi in osteoporosis: a review of its pharmacology, phytochemistry, pharmacokinetics and safety. Molecules 22:1469. https://doi.org/10.3390/molecules22091469

    Article  CAS  PubMed Central  Google Scholar 

  109. Zhang Y, Dong XL, Leung PC, Che CT, Wong MS (2008) Fructus ligustri lucidi extract improves calcium balance and modulates the calciotropic hormone level and vitamin D-dependent gene expression in aged ovariectomized rats. Menopause 15:558–565. https://doi.org/10.1097/gme.0b013e31814fad27

    Article  PubMed  Google Scholar 

  110. Zhang Y, Leung PC, Che CT, Chow HK, Wu CF, Wong MS (2008) Improvement of bone properties and enhancement of mineralization by ethanol extract of Fructus Ligustri Lucidi. Br J Nutr 99:494–502. https://doi.org/10.1017/s0007114507801589

    Article  CAS  PubMed  Google Scholar 

  111. Li L, Chen B, Zhu R, Li R, Tian Y, Liu C, Jia Q, Wang L, Tang J, Zhao D, Mo F, Liu Y, Li Y, Orekhov AN, Brömme D, Zhang D, Gao S (2019) Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice. Aging (Albany NY) 11:9348–9368. https://doi.org/10.18632/aging.102376

    Article  CAS  Google Scholar 

  112. Xue C, Pan W, Lu X, Guo J, Xu G, Sheng Y, Yuan G, Zhao N, Sun J, Guo X, Wang M, Li H, Du P, An L, Han X (2021) Effects of compound deer bone extract on osteoporosis model mice and intestinal microflora. J Food Biochem 45:e13740. https://doi.org/10.1111/jfbc.13740

    Article  CAS  PubMed  Google Scholar 

  113. Zeng X, Feng Q, Zhao F, Sun C, Zhou T, Yang J, Zhan X (2018) Puerarin inhibits TRPM3/miR-204 to promote MC3T3-E1 cells proliferation, differentiation and mineralization. Phytother Res 32:996–1003. https://doi.org/10.1002/ptr.6034

    Article  CAS  PubMed  Google Scholar 

  114. Hong S, Cha KH, Kwon DY, Son YJ, Kim SM, Choi JH, Yoo G, Nho CW (2021) Agastache rugosa ethanol extract suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. Phytomedicine 84:153517. https://doi.org/10.1016/j.phymed.2021.153517

    Article  CAS  PubMed  Google Scholar 

  115. Hu K, Adachi JD (2019) Glucocorticoid induced osteoporosis. Expert Rev Endocrinol Metab 14:259–266. https://doi.org/10.1080/17446651.2019.1617131

    Article  CAS  PubMed  Google Scholar 

  116. Nemati M, Kamilah H, Huda N, Ariffin F (2015) In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source. Int J Food Sci Nutr 67:535–540. https://doi.org/10.1080/09637486.2016.1179269

    Article  CAS  PubMed  Google Scholar 

  117. Jung WK, Lee BJ, Kim SK (2006) Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br J Nutr 95:124–128. https://doi.org/10.1079/bjn20051615

    Article  CAS  PubMed  Google Scholar 

  118. Li J, Yang M, Lu C, Han J, Tang S, Zhou J, Li Y, Ming T, Wang ZJ, Su X (2020) Tuna bone powder alleviates glucocorticoid-induced osteoporosis via coregulation of the NF-κB and Wnt/β-catenin signaling pathways and modulation of gut microbiota composition and metabolism. Mol Nutr Food Res 64:e1900861. https://doi.org/10.1002/mnfr.201900861

    Article  CAS  PubMed  Google Scholar 

  119. Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y (2020) A review of the pharmacological action of astragalus polysaccharide. Front Pharmacol 11:349. https://doi.org/10.3389/fphar.2020.00349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huo J and Sun X (2016) Effect of Astragalus polysaccharides on ovariectomy-induced osteoporosis in mice. Genet Mol Res 15. https://doi.org/10.4238/gmr15049169

  121. Ou L, Wei P, Li M, Gao F (2019) Inhibitory effect of Astragalus polysaccharide on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt signaling pathway. Acta Cir Bras 34:e201900502. https://doi.org/10.1590/s0102-865020190050000002

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu J, Liu J, Liu L, Zhang G, Zhou A, Peng X (2020) The gut microbiota alteration and the key bacteria in Astragalus polysaccharides (APS)-improved osteoporosis. Food Res Int 138:109811. https://doi.org/10.1016/j.foodres.2020.109811

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Chen.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Chen, Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int 33, 2495–2506 (2022). https://doi.org/10.1007/s00198-022-06557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06557-x

Keywords

Navigation