Skip to main content

Advertisement

Log in

The effect of the microscopic and nanoscale structure on bone fragility

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone mineral density is the gold-standard for assessing bone quantity and diagnosing osteoporosis. Although bone mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Understanding the macro- and nanoscale properties of bone is critical to understanding bone fragility in osteoporosis.

Osteoporosis is a disease that affects more than 75 million people worldwide. The gold standard for osteoporosis prognosis, bone mineral density, primarily measures the quantity of bone in the skeleton, overlooking more subtle aspects of bone’s properties. Bone quality, a measure of bone’s architecture, geometry and material properties, is evaluated via mechanical, structural and chemical testing. Although decreased BMD indicates tissue fragility at the clinical level, changes in the substructure of bone can help indicate how bone quality is altered in osteoporosis. Additionally, mechanical properties which can quantify fragility, or bone’s inability to resist fracture, can be changed due to alterations in bone architecture and composition. Recent studies have focused on examination of bone on the nanoscale, suggesting the importance of understanding the interactions of the mineral crystals and collagen fibrils and how they can alter bone quality. It is therefore important to understand alterations in bone that occur at the macro-, micro- and nanoscopic levels to determine what parameters contribute to decreased bone quality in diseased tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

FTIR:

Fourier transform infrared microscopy

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

SAXS:

Small angle X-ray scattering

OVX:

Ovariectomized

References

  1. WHO (2003) Prevention and Management of Osteoporosis. Report of a WHO Scientific Group. WHO Technical Report Series, No 921, Geneva, Switzerland

  2. Wainwright S, Phipps K, Stone J (2001) A large proportion of fractures in postmenopausal women occur with baseline bone mineral density t-score −2.5. J Bone Miner Res 16:S155

    Google Scholar 

  3. Friedman AW (2006) Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol 12:70–77

    Article  PubMed  Google Scholar 

  4. Asefa T, Yoshina-Ishii C, MacLachlan MJ et al (2000) New nanocomposites: putting organic function “inside” the channel walls of periodic mesoporous silica. J Mater Chem 10:1751–1755

    Article  CAS  Google Scholar 

  5. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mat Sci Eng C-Biomim 25:131–143

    Article  CAS  Google Scholar 

  6. Burstein AH, Zika JM, Heiple KG et al (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57:956–961

    PubMed  CAS  Google Scholar 

  7. Glimcher MJ (1992) The nature of the mineral component of bone and the mechanisms of calcification. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 265–286

    Google Scholar 

  8. Danielsen CC, Andreassen TT, Mosekilde L (1986) Mechanical properties of collagen from decalcified rat femur in relation to age and in vitro maturation. Calcif Tissue Int 39:69–73

    Article  PubMed  CAS  Google Scholar 

  9. Oxlund H, Barckman M, Ortoft G et al (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    PubMed  CAS  Google Scholar 

  10. Fondrk MT, Bahniuk EH, Davy DT (1999) A damage model for nonlinear tensile behavior of cortical bone. J Biomech Eng 121:533–541

    Article  PubMed  CAS  Google Scholar 

  11. Burr DB (2005) Does early PTH treatment compromise bone strength? The balance between remodeling, porosity, bone mineral, and bone size. Curr Osteoporos Rep 3:19–24

    Article  PubMed  Google Scholar 

  12. Burr DB, Turner CH (2003) Biomechanics of bone. In: MJ Favus (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. ASBMR, Washington, DC, pp 58–64

  13. Hui SL, Slemenda CW, Johnston CC Jr. (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    Article  PubMed  CAS  Google Scholar 

  14. Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Article  PubMed  CAS  Google Scholar 

  15. De Laet CE, van Hout BA, Burger H et al (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315:221–225

    PubMed  Google Scholar 

  16. Garnero P, Sornay-Rendu E, Chapuy MC et al (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–349

    PubMed  CAS  Google Scholar 

  17. Riggs BL, Melton LJ 3rd (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Article  PubMed  Google Scholar 

  18. Van Der Linden JC, Verhaar JA, Weinans H (2001) A three-dimensional simulation of age-related remodeling in trabecular bone. J Bone Miner Res 16:688–696

    Article  Google Scholar 

  19. Bell KL, Loveridge N, Power J et al (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119

    Article  PubMed  CAS  Google Scholar 

  20. Foldes J, Parfitt AM, Shih MS et al (1991) Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Miner Res 6:759–766

    PubMed  CAS  Google Scholar 

  21. Ritzel H, Amling M, Posl M et al (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12:89–95

    Article  PubMed  CAS  Google Scholar 

  22. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

  23. Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 282:1344–1352

    Article  PubMed  CAS  Google Scholar 

  24. Pols HA, Felsenberg D, Hanley DA et al (1999) Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int 9:461–468

    Article  PubMed  CAS  Google Scholar 

  25. McClung MR (1999) Therapy for fracture prevention. JAMA 282:687–689

    Article  PubMed  CAS  Google Scholar 

  26. Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  27. Dargent-Molina P, Piault S, Breart G (2003) A comparison of different screening strategies to identify elderly women at high risk of hip fracture: results from the EPIDOS prospective study. Osteoporos Int 14:969–977

    Article  PubMed  CAS  Google Scholar 

  28. Libouban H, Moreau MF, Legrand E et al (2002) Comparison of histomorphometric descriptors of bone architecture with dual-energy X-ray absorptiometry for assessing bone loss in the orchidectomized rat. Osteoporos Int 13:422–428

    Article  PubMed  CAS  Google Scholar 

  29. Johanson NA, Charlson ME, Cutignola L et al (1993) Femoral neck bone density. Direct measurement and histomorphometric validation. J Arthroplasty 8:641–652

    Article  PubMed  CAS  Google Scholar 

  30. Hester PY, Schreiweis MA, Orban JI et al (2004) Assessing bone mineral density in vivo: dual energy X-ray absorptiometry. Poult Sci 83:215–221

    PubMed  CAS  Google Scholar 

  31. Peng Z, Tuukkanen J, Zhang H et al (1994) The mechanical strength of bone in different rat models of experimental osteoporosis. Bone 15:523–532

    Article  PubMed  CAS  Google Scholar 

  32. Fu Y, Zheng C, Li H (2000) [The study on the anti-osteoporosis effect of clodronate in ovariectomized rats]. Hua Xi Yi Ke Da Xue Xue Bao 31:226–229

    PubMed  CAS  Google Scholar 

  33. Honda A, Umemura Y, Nagasawa S (2001) Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res 16:1688–1693

    Article  PubMed  CAS  Google Scholar 

  34. Huuskonen J, Arnala I, Olkkonen H et al (2001) Alendronate influences bending force of femoral diaphysis after orchidectomy in rats. Ann Chir Gynaecol 90:109–114

    PubMed  CAS  Google Scholar 

  35. Stewart AF, Cain RL, Burr DB et al (2000) Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1–34, parathyroid hormone-related protein 1–36, and SDZ-parathyroid hormone 893. J Bone Miner Res 15:1517–1525

    Article  PubMed  CAS  Google Scholar 

  36. Kozloff KM, Carden A, Bergwitz C et al (2004) Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res 19:614–622

    Article  PubMed  Google Scholar 

  37. Jepsen KJ, Schaffler MB, Kuhn JL et al (1997) Type I collagen mutation alters the strength and fatigue behavior of Mov13 cortical tissue. J Biomech 30:1141–1147

    Article  PubMed  CAS  Google Scholar 

  38. Peck WA, Burkhardt P, Christiansen C (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  39. Cooper C (2003) Epidemiology of Osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society of Bone and Mineral Research

  40. Turner CH, Rho J, Takano Y et al (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32:437–441

    Article  PubMed  CAS  Google Scholar 

  41. Rho JY, Zioupos P, Currey JD et al (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25:295–300

    Article  PubMed  CAS  Google Scholar 

  42. Rho JY, Roy ME 2nd, Tsui TY et al (1999) Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res 45:48–54

    Article  PubMed  CAS  Google Scholar 

  43. Barou O, Valentin D, Vico L et al (2002) High-resolution three-dimensional micro-computed tomography detects bone loss and changes in trabecular architecture early: comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis. Invest Radiol 37:40–46

    Article  PubMed  Google Scholar 

  44. Guo XE, Goldstein SA (2000) Vertebral trabecular bone microscopic tissue elastic modulus and hardness do not change in ovariectomized rats. J Orthop Res 18:333–336

    Article  PubMed  CAS  Google Scholar 

  45. Silva MJ, Brodt MD, Fan Z et al (2004) Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech 37:1639–1646

    Article  PubMed  Google Scholar 

  46. McNamara LM, Ederveen AG, Lyons CG et al (2006) Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 39:392–400

    Article  PubMed  CAS  Google Scholar 

  47. Akkus O, Polyakova-Akkus A, Adar F et al (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    Article  PubMed  CAS  Google Scholar 

  48. Miller LM, Little W, Schirmer A et al (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045

    Article  PubMed  Google Scholar 

  49. Boskey AL, DiCarlo E, Paschalis E et al (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    Article  PubMed  CAS  Google Scholar 

  50. Hernandez CJ, Beaupre GS, Keller TS, et al (2001) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29:74–78

    Article  PubMed  CAS  Google Scholar 

  51. Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315

    Article  PubMed  CAS  Google Scholar 

  52. Kendall K (1975) Control of cracks by interfaces in composites. Proc R Soc Lond A, Math Phys Sci 341:409–428

    Google Scholar 

  53. Boivin G, Lips P, Ott SM et al (2003) Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab 88:4199–4205

    Article  PubMed  CAS  Google Scholar 

  54. Boivin G, Vedi S, Purdie DW et al (2005) Influence of estrogen therapy at conventional and high doses on the degree of mineralization of iliac bone tissue: a quantitative microradiographic analysis in postmenopausal women. Bone 36:562–567

    Article  PubMed  CAS  Google Scholar 

  55. Boivin GY, Chavassieux PM, Santora AC et al (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  PubMed  CAS  Google Scholar 

  56. Borah B, Ritman EL, Dufresne TE et al (2005) The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 37:1–9

    Article  PubMed  CAS  Google Scholar 

  57. Allen MR, Gineyts E, Leeming DJ et al (2007) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int (In press)

  58. Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260

    Article  PubMed  CAS  Google Scholar 

  59. Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep 5:62–66

    PubMed  Google Scholar 

  60. Paschalis EP, DiCarlo E, Betts F et al (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  61. Miller LM, Vairavamurthy V, Chance MR et al (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration. Biochim Biophys Acta 1527:11–19

    PubMed  CAS  Google Scholar 

  62. Paschalis EP, Betts F, DiCarlo E et al (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486

    Article  PubMed  CAS  Google Scholar 

  63. Gadaleta SJ, Paschalis EP, Betts F et al (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16

    Article  PubMed  CAS  Google Scholar 

  64. Gross KA, Berndt CC (2002) Biomedical application of apatites. Phosphates: Geochemical Geobiological, and Materials Importance. Rev Mineral Geochem 48:631–672

    CAS  Google Scholar 

  65. Elliott JC (2002) Calcium phosphate biominerals. Phosphates: Geochemical, Geobiological, and Materials Importance. Rev Mineral Geochem 48:427–453

    CAS  Google Scholar 

  66. LeGeros RZ (1999) Calcium phosphates in demineralization/remineralization processes. J Clin Dent 10:65–73

    Google Scholar 

  67. Baig AA, Fox JL, Young RA et al (1999) Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int 64:437–449

    Article  PubMed  CAS  Google Scholar 

  68. LeGeros RZ, Tung MS (1983) Chemical stability of carbonate- and fluoride-containing apatites. Caries Res 17:419–429

    PubMed  CAS  Google Scholar 

  69. Nelson DG, Featherstone JD, Duncan JF et al (1983) Effect of carbonate and fluoride on the dissolution behaviour of synthetic apatites. Caries Res 17:200–211

    Article  PubMed  CAS  Google Scholar 

  70. Kleerekoper M (1998) The role of fluoride in the prevention of osteoporosis. Endocrinol Metab Clin North Am 27:441–452

    Article  PubMed  CAS  Google Scholar 

  71. Lau KH, Farley JR, Freeman TK et al (1989) A proposed mechanism of the mitogenic action of fluoride on bone cells: inhibition of the activity of an osteoblastic acid phosphatase. Metabolism 38:858–868

    Article  PubMed  CAS  Google Scholar 

  72. Aaron JE, de Vernejoul MC, Kanis JA (1991) The effect of sodium fluoride on trabecular architecture. Bone 12:307–310

    Article  PubMed  CAS  Google Scholar 

  73. Eriksen EF, Mosekilde L, Melsen F (1985) Effect of sodium fluoride, calcium, phosphate, and vitamin D2 on trabecular bone balance and remodeling in osteoporotics. Bone 6:381–389

    Article  PubMed  CAS  Google Scholar 

  74. Gambacciani M, Spinetti A, Taponeco F et al (1995) Treatment of postmenopausal vertebral osteopenia with monofluorophospate: a long-term calcium-controlled study. Osteoporos Int 5:467–471

    Article  PubMed  CAS  Google Scholar 

  75. Meunier PJ, Sebert JL, Reginster JY et al (1998) Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: the FAVOStudy. Osteoporos Int 8:4–12

    Article  PubMed  CAS  Google Scholar 

  76. Haguenauer D, Welch V, Shea B et al (2000) Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis. Osteoporos Int 11:727–738

    Article  PubMed  CAS  Google Scholar 

  77. Seeman E, Vellas B, Benhamou C et al (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21:1113–1120

    Article  PubMed  CAS  Google Scholar 

  78. Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  PubMed  CAS  Google Scholar 

  79. Meunier PJ, Slosman DO, Delmas PD et al (2002) Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis-a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 87:2060–2066

    Article  PubMed  CAS  Google Scholar 

  80. Escribano A, Revilla M, Hernandez ER et al (1997) Effect of lead on bone development and bone mass: a morphometric, densitometric, and histomorphometric study in growing rats. Calcif Tissue Int 60:200–203

    Article  PubMed  CAS  Google Scholar 

  81. Gruber HE, Gonick HC, Khalil-Manesh F et al (1997) Osteopenia induced by long-term, low- and high-level exposure of the adult rat to lead. Miner Electrolyte Metab 23:65–73

    PubMed  CAS  Google Scholar 

  82. Campbell JR, Rosier RN, Novotny L et al (2004) The association between environmental lead exposure and bone density in children. Environ Health Perspect 112:1200–1203

    Article  PubMed  CAS  Google Scholar 

  83. Dowd TL, Rosen JF, Gupta RK (1990) 31P NMR and saturation transfer studies of the effect of Pb2+ on cultured osteoblastic bone cells. J Biol Chem 265:20833–20838

    PubMed  CAS  Google Scholar 

  84. Long GJ, Rosen JF, Pounds JG (1990) Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells. Toxicol Appl Pharmacol 102:346–361

    Article  PubMed  CAS  Google Scholar 

  85. Miyahara T, Komiyama H, Miyanishi A et al (1994) Effects of lead on osteoclast-like cell formation in mouse bone marrow cell cultures. Calcif Tissue Int 54:165–169

    Article  PubMed  CAS  Google Scholar 

  86. Schanne FA, Dowd TL, Gupta RK et al (1990) Effect of lead on parathyroid hormone-induced responses in rat osteoblastic osteosarcoma cells (ROS 17/2.8) using 19F-NMR. Biochim Biophys Acta 1054:250–255

    Article  PubMed  CAS  Google Scholar 

  87. Puzas JE, Sickel MJ, Felter ME (1992) Osteoblasts and chondrocytes are important target cells for the toxic effects of lead. Neurotoxicology 13:783–788

    PubMed  CAS  Google Scholar 

  88. Garnero P, Borel O, Gineyts E et al (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    Article  PubMed  CAS  Google Scholar 

  89. Currey JD (2003) Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int 14:S29–S36

    Article  Google Scholar 

  90. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116

    Article  PubMed  CAS  Google Scholar 

  91. Paschalis E, Ilg A, Verdelis K et al (1998) Spectroscopic determination of collagen cross-links at the ultrastructural level, and its application to osteoporosis. Bone 23:S342

    Google Scholar 

  92. Yamauchi M, Woodley DT, Mechanic GL (1988) Aging and cross-linking of skin collagen. Biochem Biophys Res Commun 152:898–903

    Article  PubMed  CAS  Google Scholar 

  93. Yamauchi MM, Young DR, Chandler GS (1988) Crosslinking and new bone collagen syntheses in immobilized and recovering primate osteoporosis. Bone 9:415

    Article  PubMed  CAS  Google Scholar 

  94. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  PubMed  CAS  Google Scholar 

  95. Eyre D (1987) Collagen cross-linking amino acids. Methods Enzymol 144:115–139

    Article  PubMed  CAS  Google Scholar 

  96. Robins SP, Brady JD (2002) Collagen cross-linking and metabolism. In: JP Bilezikian, LG Raisz, GA Rodan (eds) Principles of bone biology. Academic Press, San Diego, pp 211–223

  97. Eyre DR, Dickson IR, Van Ness K (1988) Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J 252:495–500

    PubMed  CAS  Google Scholar 

  98. Eyre DR (1981) Cross-link maturation in bone collagen. Dev Biochem 22:51–55

    CAS  Google Scholar 

  99. Saito M, Marumo K, Fujii K et al (1997) Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem 253:26–32

    Article  PubMed  CAS  Google Scholar 

  100. Bailey AJ, Wotton SF, Sims TJ et al (1992) Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun 185:801–805

    Article  PubMed  CAS  Google Scholar 

  101. Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628

    Article  PubMed  CAS  Google Scholar 

  102. Lees S, Eyre DR, Barnard SM (1990) BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res 24:95–105

    Article  PubMed  CAS  Google Scholar 

  103. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    Article  PubMed  CAS  Google Scholar 

  104. Hernandez CJ, Tang SY, Baumbach BM et al (2005) Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37:825–832

    Article  PubMed  CAS  Google Scholar 

  105. Keaveny TM, Wachtel EF, Guo XE et al (1994) Mechanical behavior of damaged trabecular bone. J Biomech 27:1309–1318

    Article  PubMed  CAS  Google Scholar 

  106. Wang X, Shen X, Li X et al (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    Article  PubMed  Google Scholar 

  107. Callahan L (1998) The burden of rheumatoid arthritis: facts and figures. J Rheumatol Suppl 53:8–12

    PubMed  CAS  Google Scholar 

  108. Bailey AJ, Sims TJ, Ebbesen EN et al (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210

    Article  PubMed  CAS  Google Scholar 

  109. Bailey AJ, Knott L (1999) Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol 34:337–351

    Article  PubMed  CAS  Google Scholar 

  110. Paschalis EP, Shane E, Lyritis G et al (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    Article  PubMed  Google Scholar 

  111. Balena R, Toolan BC, Shea M et al (1993) The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 92:2577–2586

    Article  PubMed  CAS  Google Scholar 

  112. Knott L, Bailey AJ (1998) Collagen cross-links in mineralized tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  113. Knott L, Whitehead CC, Fleming RH et al (1995) Biochemical changes in collagen matrix of osteoporotic avian bone. Biochem J 310:1045–1051

    PubMed  CAS  Google Scholar 

  114. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106:1–56

    Article  PubMed  CAS  Google Scholar 

  115. Monnier VM (2003) Intervention against the Maillard reaction in vivo. Arch Biochem Biophys 419:1–15

    Article  PubMed  CAS  Google Scholar 

  116. Odetti P, Rossi S, Monacelli F et al (2005) Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 1043:710–717

    Article  PubMed  CAS  Google Scholar 

  117. Viguet-Carrin S, Roux JP, Arlot ME et al (2005) Contribution of the advanced glycation end product pentosidine to compressive biomechanical properties of human lumbar vertebrae. J Bone Miner Res 20:S115

    Google Scholar 

  118. Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310

    Article  PubMed  CAS  Google Scholar 

  119. Saito M, Mori S, Mashiba T et al (In Press) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporosis International

  120. Bank RA, Bayliss MT, Lafeber FP et al (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330(Pt 1):345–351

    PubMed  CAS  Google Scholar 

  121. Nakamura K, Nakazawa Y, Ienaga K (1997) Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose. Biochem Biophys Res Commun 232:227–230

    Article  PubMed  CAS  Google Scholar 

  122. Hein G, Weiss C, Lehmann G et al (2006) Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 65:101–104

    Article  PubMed  CAS  Google Scholar 

  123. Monnier VM (1989) Toward a Maillard reaction theory of aging. Prog Clin Biol Res 304:1–22

    PubMed  CAS  Google Scholar 

  124. Vasan S, Foiles P, Founds H (2003) Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 419:89–96

    Article  PubMed  CAS  Google Scholar 

  125. Loeser RF, Yammani RR, Carlson CS et al (2005) Articular chondrocytes express the receptor for advanced glycation end products: Potential role in osteoarthritis. Arthritis Rheum 52:2376–2385

    Article  PubMed  CAS  Google Scholar 

  126. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    Article  PubMed  CAS  Google Scholar 

  127. Charonis AS, Tsilbary EC (1992) Structural and functional changes of laminin and type IV collagen after nonenzymatic glycation. Diabetes 41(Suppl 2):49–51

    PubMed  CAS  Google Scholar 

  128. Nagaraj RH, Prabhakaram M, Ortwerth BJ et al (1994) Suppression of pentosidine formation in galactosemic rat lens by an inhibitor of aldose reductase. Diabetes 43:580–586

    Article  PubMed  CAS  Google Scholar 

  129. Monnier VM, Bautista O, Kenny D et al (1999) Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 48:870–880

    Article  PubMed  CAS  Google Scholar 

  130. Giardino I, Edelstein D, Brownlee M (1994) Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 94:110–117

    Article  PubMed  CAS  Google Scholar 

  131. Alikhani M, Alikhani Z, Boyd C et al (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40:345–353

    Article  PubMed  CAS  Google Scholar 

  132. Ding KH, Wang ZZ, Hamrick MW et al (2006) Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340:1091–1097

    Article  PubMed  CAS  Google Scholar 

  133. Nyman JS, Roy A, Tyler JH et al (2007) Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res 25:646–655

    Article  PubMed  Google Scholar 

  134. Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151

    Article  PubMed  CAS  Google Scholar 

  135. Katayama Y, Akatsu T, Yamamoto M et al (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937

    PubMed  CAS  Google Scholar 

  136. Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest 70:138–151

    PubMed  CAS  Google Scholar 

  137. Yamagishi S, Nakamura K, Imaizumi T (2005) Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 1:93–106

    Article  PubMed  CAS  Google Scholar 

  138. Yamagishi S, Takeuchi M, Inagaki Y et al (2003) Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 23:129–134

    PubMed  CAS  Google Scholar 

  139. Boskey AL, Wright TM, Blank RD (1999) Collagen and bone strength. J Bone Min Res 14:330–333

    Article  CAS  Google Scholar 

  140. McCalden RW, McGeough JA, Barker MB et al (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–1205

    PubMed  CAS  Google Scholar 

  141. Kafantari H, Kounadi E, Fatouros M et al (2000) Structural alterations in rat skin and bone collagen fibrils induced by ovariectomy. Bone 26:349–353

    Article  PubMed  CAS  Google Scholar 

  142. Rubin C, Turner AS, Muller R et al (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17:349–357

    Article  PubMed  Google Scholar 

  143. Rubin MA, Jasiuk I (2005) The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36:653–664

    Article  PubMed  Google Scholar 

  144. Adachi E, Hopkinson I, Hayashi T (1997) Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol 173:73–156

    Article  PubMed  CAS  Google Scholar 

  145. Tzaphlidou M, Kafantari H (2000) Influence of nutritional factors on bone collagen fibrils in ovariectomized rats. Bone 27:635–638

    Article  PubMed  CAS  Google Scholar 

  146. Reilly DT, Burstein AH, Frankel VH (1974) The elastic modulus for bone. J Biomech 7:271–275

    Article  PubMed  CAS  Google Scholar 

  147. Evans FG, Vincentelli R (1969) Relation of collagen fiber orientation to some mechanical properties of human cortical bone. J Biomech 2:63–71

    Article  PubMed  CAS  Google Scholar 

  148. Kounadi E, Fountos G, Tzaphlidou M (1998) The influence of inflammation-mediated osteopenia (IMO) on the structure of rabbit bone and skin collagen fibrils. Connect Tissue Res 37:69–76

    Article  PubMed  CAS  Google Scholar 

  149. Kazanci M, Roschger P, Paschalis EP et al (2006) Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol 156:489–496

    Article  PubMed  CAS  Google Scholar 

  150. Puustjarvi K, Nieminen J, Rasanen T et al (1999) Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res 14:321–329

    Article  PubMed  CAS  Google Scholar 

  151. Martin RB, Boardman DL (1993) The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 26:1047–1054

    Article  PubMed  CAS  Google Scholar 

  152. Skedros JG, Hunt KJ (2004) Does the degree of laminarity correlate with site-specific differences in collagen fibre orientation in primary bone? An evaluation in the turkey ulna diaphysis. J Anat 205:121–134

    Article  PubMed  Google Scholar 

  153. Kalmey JK, Lovejoy CO (2002) Collagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading? Bone 31:327–332

    Article  PubMed  CAS  Google Scholar 

  154. Ramasamy JG, Akkus O (2007) Local variations in the micromechanical properties of mouse femur: The involvement of collagen fiber orientation and mineralization. J Biomech 40:910–918

    Article  PubMed  CAS  Google Scholar 

  155. Skedros JG, Dayton MR, Sybrowsky CL et al (2006) The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol 209:3025–3042

    Article  PubMed  Google Scholar 

  156. Rubin MA, Jasiuk I, Taylor J et al (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    Article  PubMed  Google Scholar 

  157. Rinnerthaler S, Roschger P, Jakob HF et al (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64:422–429

    Article  PubMed  CAS  Google Scholar 

  158. Fountos G, Kounadi E, Tzaphlidou M et al (1998) The effects of inflammation-mediated osteoporosis (IMO) on the skeletal Ca/P ratio and on the structure of rabbit bone and skin collagen. Appl Radiat Isot 49:657–659

    Article  PubMed  CAS  Google Scholar 

  159. Martin RB, Ishida J (1989) The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 22:419–426

    Article  PubMed  CAS  Google Scholar 

  160. Hasegawa K, Turner CH, Burr DB (1994) Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif Tissue Int 55:381–386

    Article  PubMed  CAS  Google Scholar 

  161. Takano Y, Turner CH, Burr DB (1996) Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. J Bone Miner Res 11:1292–1301

    PubMed  CAS  Google Scholar 

  162. Marotti G, Muglia MA (1988) A scanning electron microscope study of human bony lamellae. Proposal for a new model of collagen lamellar organization. Arch Ital Anat Embriol 93:163–175

    PubMed  CAS  Google Scholar 

  163. Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180

    Article  PubMed  CAS  Google Scholar 

  164. Marcott C, Reeder RC, Paschalis EP et al (1998) Infrared microspectroscopic imaging of biomineralized tissues using a mercury-cadmium-telluride focal-plane array detector. Cell Mol Biol (Noisy-le-grand) 44:109–115

    CAS  Google Scholar 

  165. Chapman JA (1984) Molecular Organization in the collagen fibril. In: Hukins DWL (ed) Connective tissue matrix. Macmillan, London

    Google Scholar 

  166. Prockop DJ, Berg RA, Kivirikko KI et al (1976) Intracellular Steps in the Biosynthesis of Collagen. In: Ramachandran GN, Reddi AH (eds) Biochemistry of collagen. Plenum, New York

    Google Scholar 

  167. Jackson SA, Cartwright AG, Lewis D (1978) The morphology of bone mineral crystals. Calcif Tissue Res 25:217–222

    Article  PubMed  CAS  Google Scholar 

  168. Fratzl P, Schreiber S, Boyde A (1996) Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif Tissue Int 58:341–346

    Article  PubMed  CAS  Google Scholar 

  169. Landis WJ, Moradian-Oldak J, Weiner S (1991) Topographic imaging of mineral and collagen in the calcifying turkey tendon. Connect Tissue Res 25:181–196

    Article  PubMed  CAS  Google Scholar 

  170. Lees S, Prostak KS, Ingle VK et al (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int 55:180–189

    Article  PubMed  CAS  Google Scholar 

  171. Eppell SJ, Tong W, Katz JL et al (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19:1027–1034

    Article  PubMed  CAS  Google Scholar 

  172. Fratzl P, Gupta HS, Paschalis EP et al (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  173. Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–544

    Article  PubMed  CAS  Google Scholar 

  174. Kim HM, Rey C, Glimcher MJ (1995) Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. J Bone Miner Res 10:1589–1601

    PubMed  CAS  Google Scholar 

  175. Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Tissue Res 30:165–175

    Article  PubMed  CAS  Google Scholar 

  176. Wess T, Alberts I, Hiller J et al (2002) Microfocus small angle X-ray scattering reveals structural features in archaeological bone samples: detection of changes in bone mineral habit and size. Calcif Tissue Int 70:103–110

    Article  PubMed  CAS  Google Scholar 

  177. Camacho NP, Rinnerthaler S, Paschalis EP et al (1999) Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone 25:287–293

    Article  PubMed  CAS  Google Scholar 

  178. Fratzl P, Roschger P, Eschberger J et al (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle X-ray-scattering study. J Bone Miner Res 9:1541–1549

    Article  PubMed  CAS  Google Scholar 

  179. Lundon K, Dumitriu M, Grynpas M (1994) The long-term effect of ovariectomy on the quality and quantity of cancellous bone in young macaques. Bone Miner 24:135–149

    Article  PubMed  CAS  Google Scholar 

  180. Simmons ED Jr., Pritzker KP, Grynpas MD (1991) Age-related changes in the human femoral cortex. J Orthop Res 9:155–167

    Article  PubMed  Google Scholar 

  181. Thompson DD, Posner AS, Laughlin WS et al (1983) Comparison of bone apatite in osteoporotic and normal Eskimos. Calcif Tissue Int 35:392–393

    Article  PubMed  CAS  Google Scholar 

  182. Burnell JM, Baylink DJ, Chestnut CH 3rd et al (1982) Bone matrix and mineral abnormalities in postmenopausal osteoporosis. Metabolism 31:1113–1120

    Article  PubMed  CAS  Google Scholar 

  183. Gadeleta SJ, Boskey AL, Paschalis E et al (2000) A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 27:541–550

    Article  PubMed  CAS  Google Scholar 

  184. Jager I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

    PubMed  CAS  Google Scholar 

  185. Roschger P, Gupta HS, Berzlanovich A et al (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    Article  PubMed  CAS  Google Scholar 

  186. Loveridge N, Power J, Reeve J et al (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  187. Roschger P, Rinnerthaler S, Yates J et al (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191

    Article  PubMed  CAS  Google Scholar 

  188. Fratzl P, Fratzl-Zelman N, Klaushofer K et al (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413

    Article  PubMed  CAS  Google Scholar 

  189. Arsenault AL (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int 43:202–212

    Article  PubMed  CAS  Google Scholar 

  190. Landis WJ, Hodgens KJ, Arena J et al (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202

    Article  PubMed  CAS  Google Scholar 

  191. Tong W, Glimcher MJ, Katz JL et al (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72:592–598

    Article  PubMed  CAS  Google Scholar 

  192. Hassenkam T, Fantner GE, Cutroni JA et al (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35:4–10

    Article  PubMed  Google Scholar 

  193. Weiner S, Traub W (1989) Crystal size and organization in bone. Connect Tissue Res 21:259–265

    Article  PubMed  CAS  Google Scholar 

  194. Ascenzi A, Bonucci E, Generali P et al (1979) Orientation of Apatite in Single Osteon Samples as Studied by Pole Figures. Calcif Tissue Int 29:101–105

    Article  PubMed  CAS  Google Scholar 

  195. Jaschouz D, Paris O, Roschger P et al (2003) Pole figure analysis of mineral nanoparticle orientation in individual trabecula of human vertebral bone. J Appl Crystallogr 36:494–498

    Article  CAS  Google Scholar 

  196. Wolff J (1870) Uber die innere Architectur der knochen und ihre Bedeutung fur die Fragen vom Knochenwachsthum. Archiv fur pathologische Anatomie und Physiologie 50:389–450

    Article  Google Scholar 

  197. Bumrerraj S, Katz JL (2001) Scanning acoustic microscopy study of human cortical and trabecular bone. Ann Biomed Eng 29:1034–1042

    Article  PubMed  CAS  Google Scholar 

  198. Frasca P, Harper RA, Katz JL (1977) Collagen fiber orientations in human secondary osteons. Acta Anat (Basel) 98:1–13

    CAS  Google Scholar 

  199. Katz JL, Meunier A (1993) Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J Biomech Eng 115:543–548

    Article  PubMed  CAS  Google Scholar 

  200. Zysset PK, Guo XE, Hoffler CE et al (1998) Mechanical properties of human trabecular bone lamellae quantified by nanoindentation. Technol Health Care 6:429–432

    PubMed  CAS  Google Scholar 

  201. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  PubMed  CAS  Google Scholar 

  202. Gupta HS, Seto J, Wagermaier W et al (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA 103:17741–17746

    Article  PubMed  CAS  Google Scholar 

  203. Gupta HS, Wagermaier W, Zickler GA et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5:2108–2111

    Article  PubMed  CAS  Google Scholar 

  204. Gao H, Ji B, Jager IL et al (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597–5600

    Article  PubMed  CAS  Google Scholar 

  205. Boyde A, Hordell MH (1969) Scanning electron microscopy of lamellar bone. Z Zellforsch Mikrosk Anat 93:213–231

    Article  PubMed  CAS  Google Scholar 

  206. Ziv V, Sabanay I, Arad T et al (1996) Transitional structures in lamellar bone. Microsc Res Tech 33:203–213

    Article  PubMed  CAS  Google Scholar 

  207. Donnelly E, Baker SP, Boskey AL et al (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res A 77:426–435

    PubMed  Google Scholar 

  208. Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184

    Article  PubMed  CAS  Google Scholar 

  209. Xu J, Rho JY, Mishra SR et al (2003) Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J Biomed Mater Res A 67:719–726

    Article  PubMed  CAS  Google Scholar 

  210. Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12:107R–116R

    Article  PubMed  CAS  Google Scholar 

  211. Corsi A, Xu T, Chen XD et al (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17:1180–1189

    Article  PubMed  CAS  Google Scholar 

  212. Xu T, Bianco P, Fisher LW et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82

    Article  PubMed  CAS  Google Scholar 

  213. Boskey AL, Spevak L, Paschalis E et al (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154

    Article  PubMed  CAS  Google Scholar 

  214. Boskey AL, Gadaleta S, Gundberg C et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196

    Article  PubMed  CAS  Google Scholar 

  215. Ducy P, Desbois C, Boyce B et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  PubMed  CAS  Google Scholar 

  216. Termine JD, Kleinman HK, Whitson SW et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  PubMed  CAS  Google Scholar 

  217. Fisher LW, Drum MA, Robey PG et al (1987) Osteonectin content in human osteogenesis imperfecta bone shows a range similar to that of two bovine models of OI. Calcif Tissue Int 40:260–264

    Article  PubMed  CAS  Google Scholar 

  218. Termine JD, Robey PG, Fisher LW et al (1984) Osteonectin, bone proteoglycan, and phosphophoryn defects in a form of bovine osteogenesis imperfecta. Proc Natl Acad Sci USA 81:2213–2217

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors have no disclosures of conflict of interest related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Burr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruppel, M.E., Miller, L.M. & Burr, D.B. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 19, 1251–1265 (2008). https://doi.org/10.1007/s00198-008-0579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0579-1

Keywords

Navigation