Skip to main content
Log in

Molecular methods for age estimation

The current state of the art in relation to specific demands of forensic practice

Molekulare Methoden zur Lebensaltersschätzung

“The State of the Art” unter Berücksichtigung der spezifischen Anforderungen der forensischen Praxis

  • Leitthema
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Abstract

With the increase of globalization and migration, the topic of age estimation has become more and more important in diverse fields of application, especially for age estimation in living individuals as well as for age estimation in the identification of unknown deceased and of unknown donors of a trace. Especially in the last decade, the traditional spectrum of morphological methods has been expanded to numerous new approaches based on the use of age-dependent molecular changes. Articles in this field have been and are being published in quick succession but not all approaches can (already) meet the demands of forensic practice. It may be a challenge for the forensic practitioner to keep track of suitable methods and to find the optimal method for a single case with its specific questions, conditions and requirements. This overview is intended to provide orientation on the question of which molecular approaches can already be used or will be applicable in the foreseeable future in different application fields. The focus is on the accumulation of D‑aspartic acid and pentosidine, DNA methylation and the use of the bomb pulse-derived carbon-14 (14C).

Zusammenfassung

Mit Zunahme von Globalisierung und Migration hat das Thema Lebensaltersschätzung in den forensischen Wissenschaften mehr und mehr an Bedeutung gewonnen (bei Lebenden als auch bei nicht identifizierten Leichen oder im Zuge der Identifizierung eines unbekannten Spurenverursachers). Das traditionelle Spektrum morphologischer Methoden wurde insbesondere im letzten Jahrzehnt um zahlreiche neue Ansätze erweitert, die auf der Nutzung altersabhängiger molekularer Veränderungen basieren. In rascher Folge wurden und werden Beiträge in diesem Feld publiziert – aber nicht alle Ansätze können die Anforderungen der forensischen Praxis (bereits) erfüllen. Für den forensischen Praktiker kann es zur Herausforderung werden, die Übersicht über geeignete Methoden zu behalten und die optimale Methode für den konkreten Einzelfall mit seinen spezifischen Fragestellungen, Bedingungen und Voraussetzungen zu finden. Diese Übersicht will Orientierung zu der Frage geben, welche molekularen Ansätze unter welcher Fragestellung bereits einsetzbar sind oder in absehbarer Zeit einsetzbar sein werden. Im Fokus stehen dabei die Akkumulation von D‑Asparaginsäure und Pentosidin, die DNA-Methylierung und die Nutzung des bei Atombombenversuchen freigesetzten Radiocarbons (14C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritz-Timme S, Cattaneo C, Collins MJ et al (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med. https://doi.org/10.1007/s004140050283

    Article  PubMed  Google Scholar 

  2. Adserias-Garriga J, Thomas C, Ubelaker DH et al (2018) When forensic odontology met biochemistry: multidisciplinary approach in forensic human identification. Arch Oral Biol 87:7–14. https://doi.org/10.1016/j.archoralbio.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Maulani C, Auerkari EI (2020) Age estimation using DNA methylation technique in forensics: a systematic review. Egypt J Forensic Sci 10:81. https://doi.org/10.1186/s41935-020-00214-2

    Article  Google Scholar 

  4. Parson W (2018) Age estimation with DNA: from forensic DNA fingerprinting to forensic (Epi)Genomics: a mini-review. Gerontology 64:326–332. https://doi.org/10.1159/000486239

    Article  CAS  PubMed  Google Scholar 

  5. Zapico SC (2017) Mechanisms linking aging, diseases and biological age estimation. CRC Press, Portland

    Book  Google Scholar 

  6. Meissner C, Ritz-Timme S (2010) Molecular pathology and age estimation. Forensic Sci Int 203:34–43. https://doi.org/10.1016/j.forsciint.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  7. Ritz-Timme S, Collins MJ (2002) Racemization of aspartic acid in human proteins. Ageing Res Rev 1:43–59. https://doi.org/10.1016/S0047-6374(01)00363-3

    Article  CAS  PubMed  Google Scholar 

  8. Ritz-Timme S, Laumeier I, Collins M (2003) Age estimation based on aspartic acid racemization in elastin from the yellow ligaments. Int J Legal Med 117:96–101. https://doi.org/10.1007/s00414-002-0355-2

    Article  CAS  PubMed  Google Scholar 

  9. Klumb K, Matzenauer C, Reckert A et al (2016) Age estimation based on aspartic acid racemization in human sclera. Int J Legal Med 130:207–211. https://doi.org/10.1007/s00414-015-1255-6

    Article  PubMed  Google Scholar 

  10. Ohtani S, Matsushima Y, Kobayashi Y et al (1998) Evaluation of aspartic acid racemization ratios in the human femur for age estimation. J Forensic Sci 43:949–953

    Article  CAS  Google Scholar 

  11. Ohtani S, Yamamoto T, Abe I et al (2007) Age-dependent changes in the racemisation ratio of aspartic acid in human alveolar bone. Arch Oral Biol 52:233–236. https://doi.org/10.1016/j.archoralbio.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  12. Pfeiffer H, Mörnstad H, Teivens A (1995) Estimation of chronologic age using the aspartic acid racemization method. I. On human rib cartilage. Int J Legal Med 108:19–23. https://doi.org/10.1007/BF01845611

    Article  CAS  PubMed  Google Scholar 

  13. Chen S, Lv Y, Wang D et al (2016) Aspartic acid racemization in dentin of the third molar for age estimation of the Chaoshan population in South China. Forensic Sci Int 266:234–238. https://doi.org/10.1016/j.forsciint.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  14. Elfawal MA, Alqattan SI, Ghallab NA (2015) Racemization of aspartic acid in root dentin as a tool for age estimation in a Kuwaiti population. Med Sci Law 55:22–29. https://doi.org/10.1177/0025802414524383

    Article  PubMed  Google Scholar 

  15. Rastogi M, Logani A, Shah N et al (2017) Age estimation of living Indian individuals based on aspartic acid racemization from tooth biopsy specimen. J Forensic Dent Sci 9:83–90. https://doi.org/10.4103/jfo.jfds_21_16

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wochna K, Bonikowski R, Śmigielski J et al (2018) Aspartic acid racemization of root dentin used for dental age estimation in a Polish population sample. Forensic Sci Med Pathol 14:285–294. https://doi.org/10.1007/s12024-018-9984-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaudhuri J, Bains Y, Guha S et al (2018) The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28:337–352. https://doi.org/10.1016/j.cmet.2018.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soboleva A, Schmidt R, Vikhnina M et al (2017) Maillard proteomics: opening new pages. Int J Mol Sci. https://doi.org/10.3390/ijms18122677

    Article  PubMed  PubMed Central  Google Scholar 

  19. Valenzuela A, Guerra-Hernández E, Rufián-Henares JÁ et al (2018) Differences in non-enzymatic glycation products in human dentine and clavicle: changes with aging. Int J Legal Med 132:1749–1758. https://doi.org/10.1007/s00414-018-1908-3

    Article  PubMed  Google Scholar 

  20. Greis F, Reckert A, Fischer K et al (2018) Analysis of advanced glycation end products (AGEs) in dentine: useful for age estimation? Int J Legal Med 132:799–805. https://doi.org/10.1007/s00414-017-1671-x

    Article  PubMed  Google Scholar 

  21. Becker J, Mahlke NS, Reckert A et al (2020) Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med 134:721–733. https://doi.org/10.1007/s00414-019-02054-9

    Article  PubMed  Google Scholar 

  22. Arakawa S, Suzuki R, Kurosaka D et al (2020) Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 10:18774. https://doi.org/10.1038/s41598-020-75923-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daunay A, Baudrin LG, Deleuze J‑F et al (2019) Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep 9:8862. https://doi.org/10.1038/s41598-019-45197-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleckhaus J, Schneider PM (2020) Novel multiplex strategy for DNA methylation-based age prediction from small amounts of DNA via pyrosequencing. Forensic Sci Int Genet 44:102189. https://doi.org/10.1016/j.fsigen.2019.102189

    Article  CAS  PubMed  Google Scholar 

  25. Freire-Aradas A, Pośpiech E, Aliferi A et al (2020) A comparison of forensic age prediction models using data from four DNA methylation technologies. Front Genet 11:932. https://doi.org/10.3389/fgene.2020.00932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naue J, Sänger T, Hoefsloot HCJ et al (2018) Proof of concept study of age-dependent DNA methylation markers across different tissues by massive parallel sequencing. Forensic Sci Int Genet 36:152–159. https://doi.org/10.1016/j.fsigen.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Li X, Yang Y et al (2019) Human age prediction based on DNA methylation of non-blood tissues. Comput Methods Programs Biomed 171:11–18. https://doi.org/10.1016/j.cmpb.2019.02.010

    Article  PubMed  Google Scholar 

  28. Correia Dias H, Corte-Real F, Cunha E et al (2020) DNA methylation age estimation from human bone and teeth. Aust J Forensic Sci 29:1–14. https://doi.org/10.1080/00450618.2020.1805011

    Article  Google Scholar 

  29. Jung S‑E, Lim SM, Hong SR et al (2019) DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 38:1–8. https://doi.org/10.1016/j.fsigen.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  30. Woźniak A, Heidegger A, Piniewska-Róg D et al (2021) Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging (Albany NY). https://doi.org/10.18632/aging.202783

    Article  Google Scholar 

  31. Alkass K, Buchholz BA, Druid H et al (2011) Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin. Forensic Sci Int 209:34–41. https://doi.org/10.1016/j.forsciint.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Alkass K, Saitoh H, Buchholz BA et al (2013) Analysis of radiocarbon, stable isotopes and DNA in teeth to facilitate identification of unknown decedents. PLoS ONE 8:e69597. https://doi.org/10.1371/journal.pone.0069597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spalding KL, Buchholz BA, Bergman L‑E et al (2005) Forensics: age written in teeth by nuclear tests. Nature 437:333–334. https://doi.org/10.1038/437333a

    Article  CAS  PubMed  Google Scholar 

  34. Johnstone-Belford EC, Blau S (2020) A review of bomb pulse dating and its use in the investigation of unidentified human remains. J Forensic Sci 65:676–685. https://doi.org/10.1111/1556-4029.14227

    Article  PubMed  Google Scholar 

  35. Arany S, Ohtani S, Yoshioka N et al (2004) Age estimation from aspartic acid racemization of root dentin by internal standard method. Forensic Sci Int 141:127–130. https://doi.org/10.1016/j.forsciint.2004.01.017

    Article  CAS  PubMed  Google Scholar 

  36. Ritz S, Stock R, Schütz HW et al (1995) Age estimation in biopsy specimens of dentin. Int J Legal Med 108:135–139. https://doi.org/10.1007/BF01844824

    Article  CAS  PubMed  Google Scholar 

  37. Ritz-Timme S, Rochholz G, Schütz HW et al (2000) Quality assurance in age estimation based on aspartic acid racemisation. Int J Legal Med 114:83–86. https://doi.org/10.1007/s004140000159

    Article  CAS  PubMed  Google Scholar 

  38. Ritz S, Schtz H‑W, Schwarzer B (1990) The extent of aspartic acid racemization in dentin: a possible method for a more accurate determination of age at death? Z Rechtsmed. https://doi.org/10.1007/BF00204710

    Article  PubMed  Google Scholar 

  39. Ritz-Timme S, Rochholz G, Stammert R et al (2002) Biochemische Altersschätzung Zur Frage genetischer und soziokultureller (ethnischer) Einflüsse auf die Razemisierung von Asparaginsäure in Dentin. Rechtsmedizin 12:203–206. https://doi.org/10.1007/s00194-002-0152-8

    Article  Google Scholar 

  40. Mahlke NS, Renhart S, Talaa D et al (2021) Molecular clocks in ancient proteins: do they reflect the age at death even after millennia? Int J Legal Med. https://doi.org/10.1007/s00414-021-02522-1

    Article  PubMed  Google Scholar 

  41. Koop BE, Reckert A, Becker J et al (2020) Epigenetic clocks may come out of rhythm-implications for the estimation of chronological age in forensic casework. Int J Legal Med 134:2215–2228. https://doi.org/10.1007/s00414-020-02375-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Declerck K, Vanden Berghe W (2018) Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 174:18–29. https://doi.org/10.1016/j.mad.2018.01.002

    Article  PubMed  Google Scholar 

  43. Dhingra R, Nwanaji-Enwerem JC, Samet M et al (2018) DNA methylation age-environmental influences, health impacts, and its role in environmental epidemiology. Curr Environ Health Rep 5:317–327. https://doi.org/10.1007/s40572-018-0203-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rösing FW, Kvaal SI (1998) Dental age in adults — a review of estimation methods. In: Alt KW, Rösing FW, Teschler-Nicola M (eds) Dental anthropology: fundamentals, limits and prospects. Springer Vienna, Vienna, pp 443–468

    Chapter  Google Scholar 

  45. Shi L, Jiang F, Ouyang F et al (2018) DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children. Forensic Sci Int Genet 33:1–9. https://doi.org/10.1016/j.fsigen.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  46. Koop BE, Mayer F, Gündüz T et al (2021) Postmortem age estimation via DNA methylation analysis in buccal swabs from corpses in different stages of decomposition—a “proof of principle” study. Int J Legal Med 135:167–173. https://doi.org/10.1007/s00414-020-02360-7

    Article  PubMed  Google Scholar 

  47. Ritz-Timme S (1999) Lebensaltersbestimmung aufgrund des Razemisierungsgrades von Asparaginsäure: Grundlagen, Methodik, Möglichkeiten, Grenzen, Anwendungsbereiche ; mit 6 Tabellen. Arbeitsmethoden der medizinischen und naturwissenschaftlichen Kriminalistik vol 23. Schmidt-Römhild, Lübeck

    Google Scholar 

  48. Pilin A, Cabala R, Pudil F et al (2001) The use of the D‑, L‑ aspartic ratio in decalcified collagen from human dentin as an estimator of human age. J Forensic Sci 46:1228–1231

    Article  CAS  Google Scholar 

  49. Siahaan T, Reckert A, Becker J et al (2021) Molecular and morphological findings in a sample of oral surgery patients: what can we learn for multivariate concepts for age estimation? J Forensic Sci. https://doi.org/10.1111/1556-4029.14704

    Article  PubMed  Google Scholar 

  50. Ohtani S, Yamamoto T (2010) Age estimation by amino acid racemization in human teeth. J Forensic Sci 55:1630–1633. https://doi.org/10.1111/j.1556-4029.2010.01472.x

    Article  PubMed  Google Scholar 

  51. Giuliani C, Cilli E, Bacalini MG et al (2016) Inferring chronological age from DNA methylation patterns of human teeth. Am J Phys Anthropol 159:585–595. https://doi.org/10.1002/ajpa.22921

    Article  PubMed  Google Scholar 

  52. Bekaert B, Kamalandua A, Zapico SC et al (2015) Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10:922–930. https://doi.org/10.1080/15592294.2015.1080413

    Article  PubMed  PubMed Central  Google Scholar 

  53. Márquez-Ruiz AB, González-Herrera L, Luna JD et al (2020) DNA methylation levels and telomere length in human teeth: usefulness for age estimation. Int J Legal Med. https://doi.org/10.1007/s00414-019-02242-7

    Article  PubMed  Google Scholar 

  54. Ritz S, Turzynski A, Schütz HW et al (1996) Identification of osteocalcin as a permanent aging constituent of the bone matrix: basis for an accurate age at death determination. Forensic Sci Int 77:13–26. https://doi.org/10.1016/0379-0738(95)01834-4

    Article  CAS  PubMed  Google Scholar 

  55. Ritz-Timme S, Laumeier I, Collins MJ (2003) Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br J Dermatol 149:951–959. https://doi.org/10.1111/j.1365-2133.2003.05618.x

    Article  CAS  PubMed  Google Scholar 

  56. Shapiro SD, Endicott SK, Province MA et al (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D‑aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834. https://doi.org/10.1172/JCI115204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dobberstein RC, Tung SM, Ritz-Timme S (2010) Aspartic acid racemisation in purified elastin from arteries as basis for age estimation. Int J Legal Med. https://doi.org/10.1007/s00414-009-0392-1

    Article  PubMed  Google Scholar 

  58. Verzijl N, DeGroot J, Thorpe SR et al (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027–39031. https://doi.org/10.1074/jbc.M006700200

    Article  CAS  PubMed  Google Scholar 

  59. Matzenauer C, Reckert A, Ritz-Timme S (2014) Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis. Int J Legal Med 128:995–1000. https://doi.org/10.1007/s00414-013-0940-6

    Article  PubMed  Google Scholar 

  60. Pillin A, Pudil F, Bencko V et al (2007) Contents of pentosidine in the tissue of the intervertebral disc as an indicator of the human age. Soud Lek 52:60–64

    CAS  PubMed  Google Scholar 

  61. Dias HC, Cordeiro C, Pereira J et al (2020) DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay. Forensic Sci Int 311:110267. https://doi.org/10.1016/j.forsciint.2020.110267

    Article  CAS  PubMed  Google Scholar 

  62. Schmeling A, Grundmann C, Fuhrmann A et al (2008) Aktualisierte Empfehlungen der Arbeitsgemeinschaft für Forensische Altersdiagnostik für Altersschätzungen bei Lebenden im Strafverfahren. Rechtsmedizin 18:451–453. https://doi.org/10.1007/s00194-008-0571-2

    Article  Google Scholar 

  63. Zbieć-Piekarska R, Spólnicka M, Kupiec T et al (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  64. Cho S, Jung S‑E, Hong SR et al (2017) Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci Int Genet 29:250–256. https://doi.org/10.1016/j.fsigen.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  65. Naue J, Hoefsloot HCJ, Mook ORF et al (2017) Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression. Forensic Sci Int Genet 31:19–28. https://doi.org/10.1016/j.fsigen.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  66. Weidner CI, Lin Q, Koch CM et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24. https://doi.org/10.1186/gb-2014-15-2-r24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Montesanto A, D’Aquila P, Lagani V et al (2020) A new robust epigenetic model for forensic age prediction. J Forensic Sci 65:1424–1431. https://doi.org/10.1111/1556-4029.14460

    Article  CAS  PubMed  Google Scholar 

  68. Al-Ghanmy HSG, Al-Rashedi NAM, Ayied AY (2021) Age estimation by DNA methylation levels in Iraqi subjects. Gene Rep 23:101022. https://doi.org/10.1016/j.genrep.2021.101022

    Article  Google Scholar 

  69. Aliferi A, Ballard D, Gallidabino MD et al (2018) DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models. Forensic Sci Int Genet 37:215–226. https://doi.org/10.1016/j.fsigen.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  70. Thong Z, Chan XLS, Tan JYY et al (2017) Evaluation of DNA methylation-based age prediction on blood. Forensic Sci Int Genet Suppl Ser 6:e249–e251. https://doi.org/10.1016/j.fsigss.2017.09.095

    Article  Google Scholar 

  71. Naue J, Hoefsloot HCJ, Kloosterman AD et al (2018) Forensic DNA methylation profiling from minimal traces: how low can we go? Forensic Sci Int Genet 33:17–23. https://doi.org/10.1016/j.fsigen.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  72. Lee JW, Choung CM, Jung JY et al (2018) A validation study of DNA methylation-based age prediction using semen in forensic casework samples. Leg Med (Tokyo) 31:74–77. https://doi.org/10.1016/j.legalmed.2018.01.005

    Article  CAS  Google Scholar 

  73. Hong SR, Jung S‑E, Lee EH et al (2017) DNA methylation-based age prediction from saliva: high age predictability by combination of 7 CpG markers. Forensic Sci Int Genet 29:118–125. https://doi.org/10.1016/j.fsigen.2017.04.006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Ritz-Timme.

Ethics declarations

Conflict of interest

P. Boehme, A. Reckert, J. Becker and S. Ritz-Timme declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhme, P., Reckert, A., Becker, J. et al. Molecular methods for age estimation. Rechtsmedizin 31, 177–182 (2021). https://doi.org/10.1007/s00194-021-00490-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-021-00490-9

Keywords

Schlüsselwörter

Navigation