Skip to main content

DNA-Based Methods for Age Estimation

  • Chapter
  • First Online:
P5 Medicine and Justice

Abstract

The age estimation of unidentified cadavers and human remains is a challenging field of forensic medicine and several methodologies have been proposed, including morphological and biochemical analyses. Since the identification of a number of age-related DNA modifications, several new molecular approaches have been proposed. The first DNA-based method that has been extensively studied for the application in forensic age estimation was the analysis of telomere repeats of human chromosomes; subsequently, other techniques have been proposed, including the analysis of the mitochondrial DNA variants and the more recent approaches based on the evaluation of sjTREC rearrangements in T-cells and the methylation status of the human genome. Many studies have been conducted to standardize the sampling methods, the accuracy and the reliability of age determination using molecular techniques; the most promising results have been obtained with the analyses of sjTREC rearrangements in blood samples and the methylation profile of tissues. Conversely, most studies have shown that the accuracy of both the analyses of mitochondrial DNA and telomere length are not sufficiently high to be used in forensic practice. In fact, age-related DNA modifications are susceptible to a number of variables that can alter their measure and limit the precision and reproducibility of the assays; important factors include the type of tissue used for the analysis, the characteristics and life style of the subject, the level of degradation of DNA due to the effects of post-mortem environmental agents. The real challenge is to create a model that can provide the most accurate estimation in consideration of this large number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moyzis RK, Buckingham JM, Cram LS et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17:4611–4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hall ME, Nasir L, Daunt F, Gault EA, Croxall JP, Wanless S, Monaghan P (2004) Telomere loss in relation to age and early environment in long-lived birds. Proc Biol Sci 271:1571–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryant JE, Hutchings KG, Moyzis RK, Griffith JK (1997) Measurement of telomeric DNA content in human tissues. BioTechniques 23(3):476–478, 480, 482

    Google Scholar 

  6. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martens UM, Zijlmans JM, Poon SS, Dragowska W, Yui J, Chavez EA, Ward RK, Lansdorp PM (1998) Short telomeres on human chromosome 17p. Nat Genet 18:76–80

    Article  CAS  PubMed  Google Scholar 

  9. Poon SS, Lansdorp PM (2001) Measurements of telomere length on individual chromosomes by image cytometry. Methods Cell Biol 64:69–96

    Article  CAS  PubMed  Google Scholar 

  10. Baerlocher GM, Lansdorp PM (2003) Telomere length measurements in leukocyte subsets by automated multicolor flow-FISH. Cytometry A 55:1–6

    Article  PubMed  Google Scholar 

  11. Baerlocher GM, Vulto I, de Jong G, Lansdorp PM (2006) Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 1:2365–2376

    Article  CAS  PubMed  Google Scholar 

  12. Butler MG, Tilburt J, DeVries A, Muralidhar B, Aue G, Hedges L, Atkinson J, Schwartz H (1998) Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet 105:138–144

    Article  CAS  PubMed  Google Scholar 

  13. Tsuji A, Ishiko A, Takasaki T, Ikeda N (2002) Estimating age of humans based on telomere shortening. Forensic Sci Int 126:197–199

    Article  CAS  PubMed  Google Scholar 

  14. Takasaki T, Tsuji A, Ikeda N, Ohishi M (2003) Age estimation in dental pulp DNA based on human telomere shortening. Int J Legal Med 117:232–234

    Article  PubMed  Google Scholar 

  15. Ren F, Li C, Xi H, Wen Y, Huang K (2009) Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan. Am J Forensic Med Pathol 30:252–255

    Article  CAS  PubMed  Google Scholar 

  16. Srettabunjong S, Satitsri S, Thongnoppakhun W, Tirawanchai N (2014) The study on telomere length for age estimation in a Thai population. Am J Forensic Med Pathol 35:148–153

    Article  PubMed  Google Scholar 

  17. Karlsson AO, Svensson A, Marklund A, Holmlund G (2008) Estimating human age in forensic samples by analysis of telomere repeats. Forensic Sci Int 1:569–571

    Google Scholar 

  18. Hewakapuge S, van Oorschot RA, Lewandowski P, Baindur-Hudson S (2008) Investigation of telomere lengths measurement by quantitative real-time PCR to predict age. Leg Med (Tokyo) 10:236–242

    Article  CAS  Google Scholar 

  19. Zapico SC, Ubelaker DH (2013) Applications of physiological bases of ageing to forensic sciences. Estimation of age-at-death. Ageing Res Rev 12:605–617

    Google Scholar 

  20. Lacan M, Theves C, Keyser C, Farrugia A, Baraybar JP, Crubezy E, Ludes B (2011) Detection of age-related duplications in mtDNA from human muscles and bones. Int J Legal Med 125:293–300

    Article  PubMed  Google Scholar 

  21. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    Article  CAS  PubMed  Google Scholar 

  22. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A 89:7370–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323

    Article  CAS  PubMed  Google Scholar 

  25. Lee HC, Pang CY, Hsu HS, Wei YH (1994) Differential accumulations of 4977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226:37–43

    Article  CAS  PubMed  Google Scholar 

  26. Meissner C, von Wurmb N, Oehmichen M (1997) Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot study. Int J Legal Med 110:288–291

    Article  CAS  PubMed  Google Scholar 

  27. Meissner C, von Wurmb N, Schimansky B, Oehmichen M (1999) Estimation of age at death based on quantitation of the 4977-bp deletion of human mitochondrial DNA in skeletal muscle. Forensic Sci Int 105:115–124

    Article  CAS  PubMed  Google Scholar 

  28. von Wurmb-Schwark N, Higuchi R, Fenech AP, Elfstroem C, Meissner C, Oehmichen M, Cortopassi GA (2002) Quantification of human mitochondrial DNA in a real time PCR. Forensic Sci Int 126:34–39

    Article  Google Scholar 

  29. Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, Oehmichen M (2008) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 43:645–652

    Article  CAS  PubMed  Google Scholar 

  30. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Michikawa Y, Mallidis C et al (2001) Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci U S A 98:4022–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Del Bo R, Bordoni A, Martinelli Boneschi F et al (2002) Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients. J Neurol Sci 202:85–91

    Article  PubMed  Google Scholar 

  33. Theves C, Keyser-Tracqui C, Crubezy E, Salles JP, Ludes B, Telmon N (2006) Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA. J Forensic Sci 51:865–873

    Article  CAS  PubMed  Google Scholar 

  34. Lacan M, Theves C, Amory S et al (2009) Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones. Int J Legal Med 123:161–167

    Article  PubMed  Google Scholar 

  35. Boehm T, Swann JB (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13:831–838

    Article  CAS  PubMed  Google Scholar 

  36. Douek DC, McFarland RD, Keiser PH et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396(6712):690–695

    Article  CAS  PubMed  Google Scholar 

  37. Kong F, Chen CH, Cooper MD (1998) Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 8(1):97–104

    Article  CAS  PubMed  Google Scholar 

  38. Pido-Lopez J, Imami N, Aspinall R (2001) Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin Exp Immunol 125(3):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zubakov D, Liu F, van Zelm MC, Vermeulen J et al (2010) Estimating human age from T-cell DNA rearrangements. Curr Biol 20(22):R970–R971

    Google Scholar 

  40. Ou X, Zhao H, Sun H, Yang Z, Xie B, Shi Y, Wu X (2011) Detection and quantification of the age-related sjTREC decline in human peripheral blood. Int J Legal Med 125:603–608

    Article  PubMed  Google Scholar 

  41. Ou XL, Gao J, Wang H, Wang HS, Lu HL, Sun HY (2012) Predicting human age with bloodstains by sjTREC quantification. PLoS ONE 7:e42412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho S, Ge J, Seo SB, Kim K, Lee HY, Lee SD (2014) Age estimation via quantification of signal-joint T cell receptor excision circles in Koreans. Leg Med (Tokyo) 16:135–138

    Article  CAS  Google Scholar 

  43. Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vidaki A, Daniel B, Court DS (2013) Forensic DNA methylation profiling–potential opportunities and challenges. Forensic Sci Int Genet 7:499–507

    Article  CAS  PubMed  Google Scholar 

  45. Rakyan VK, Down TA, Maslau S et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E (2011) Epigenetic predictor of age. PLoS ONE 6:e14821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 3:1018–1027

    Article  CAS  Google Scholar 

  48. Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  49. Weidner CI, Lin Q, Koch CM et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167

    Article  CAS  PubMed  Google Scholar 

  51. Huang Y, Yan J, Hou J, Fu X, Li L, Hou Y (2015) Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Sci Int Genet 17:129–136

    Article  CAS  PubMed  Google Scholar 

  52. Xu C, Qu H, Wang G et al (2015) A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci Rep 5:17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yi SH, Xu LC, Mei K, Yang RZ, Huang DX (2014) Isolation and identification of age-related DNA methylation markers for forensic age-prediction. Forensic Sci Int Genet 11:117–125

    Article  CAS  PubMed  Google Scholar 

  54. Yi SH, Jia YS, Mei K, Yang RZ, Huang DX (2015) Age-related DNA methylation changes for forensic age-prediction. Int J Legal Med 129:237–244

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Clementi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cassina, M., Clementi, M. (2017). DNA-Based Methods for Age Estimation. In: Ferrara, S. (eds) P5 Medicine and Justice. Springer, Cham. https://doi.org/10.1007/978-3-319-67092-8_26

Download citation

Publish with us

Policies and ethics